Math 120 Final

Winter 2005, Saturday March 12th.

Section: _____ Name: _____

Student Number:_____

Instructions:

- You have 3 hours for this exam.
- One 8.5 by 11 inch page of handwritten notes (front and back) is allowed.
- Write your name and section on your page of notes. Turn your page of notes in with your exam.
- Calculators (scientific or graphing) are allowed.
- If you need more space, use the backside of a page. Indicate that you have done so.
- You must show your work for full credit. Answers obtained by guessing or reading a numerical solution from a graph on your calculator when an algebraic method is available do not receive full credit.
- Clearly indicate your answers (e.g., by boxing them).
- There are 8 problems, and 9 pages to the exam. Check to make sure your exam is complete.

Problem	Total Points	Points
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	12	
Total	96	

Problem 1. Mary is jogging on a straight line from the point (-2, 10) to the point (14, -9). There is a donut shop located at the point (4, 7). (Assume units are in miles.) (a) [9 pts] What are Mary's coordinates when she is closest to the donut shop?

(b) [3 pts] If Mary get's within 2.7 miles of a donut shop, she will stop her jog and get a donut! Does Mary stop her jog and get a donut? (Show work for full credit.)

Problem 2. Joey is trying to fire his model rocket over an embankment. The rocket starts at the point (-4, 0) and follows the path $y = 20 + 3x - \frac{1}{2}x^2$. The embankment starts at the point (5, 0) and follows a straight line to the point (15, 15), where the embankment ends. (Assume units are in feet.)

(a) [6 pts] Determine if the rocket collides with the embankment, and if it does, find the point where this collision occurs.

(b) [4 pts] The rocket launcher has a control dial on it. When the control dial is set to α , the path of the rocket is

$$y = -\frac{1}{2}\alpha(x+4)(x-10\alpha).$$

Joey would like the x coordinate for the vertex of the rocket path to occur at x = 15 (where the embankment ends). What should α be set to in order for this to happen?

(c) [2 pts] With this value of α , find the height of the rocket at its vertex.

Problem 3 Let u(t) be the basic step function:

$$\mathbf{u}(\mathbf{t}) = \begin{cases} 0 \text{ if } t < 0\\ 1 \text{ if } 0 \le t \le 1\\ 0 \text{ if } 1 < t \end{cases}$$

a) [4 pts] Find the multipart rule for $f(t) = t^2 u(\frac{1}{4}(t+1))$

b) [4 pts] Find the multipart rule for g(t) = f(t) + tu(t) + 1.

c) [2 pts] What is $g(\frac{1}{2})$?

d) [2 pts] What is g(3)?

Problem 4. Suppose that

$$f(x) = x + \sqrt{x^2 + 1}$$

and that the domain for f(x) is $x \ge 2$. (a) [8 pts] Find $f^{-1}(x)$.

(b) [4 pts] What is the domain of $f^{-1}(x)$?

Problem 5. In the following picture, suppose that a = 10 feet, and that the angle $\alpha = 32^{\circ}$, the angle $\gamma = 22^{\circ}$ and the angle $\beta = 42^{\circ}$. Find the length of d. (Note the right angle at the lower right of the picture.)

Problem 6. Suppose that f(t) is a sinusoidal function of time (in seconds), which oscillates between a minimum value of .5 and a maximum value of 2.5. When t = 1, f(t) is at its minimum value. Between time t = 1 and time t = 4, f(t) reaches its maximum value exactly twice. At time t = 4, f(t) is at its minimum value.

(a) [6 pts] Find f(t).

(b) [6 pts] Suppose that the voltage output of an electrical circuit is $V(t) = e^{f(t)}$. Between t = 1 and t = 4, what percentage of the time is $V(t) \ge 7$?

Problem 7. Marvin the Magician is entertaining his guests with his magic pizza trick, he starts with half a pizza minus 10° from either end, as in the first figure. Then magically, the pizza shrinks, as the amount taken away on both ends is given by $\theta(t) = \frac{45t+10}{t+1}$ where θ is in degrees and t is in seconds (as in the second figure). The radius of the pizza is 10 inches. (a) [6 pts] Is the area of the magic pizza ever 90 in²? If so, find this time.

For Marvin's next trick, the angle taken away on either side is still given by $\theta(t)$ as above, but at the same time the inner radius r_1 , and outer radius r_2 , as in the picture below, are changing as well. They are changing according to

$$r_1(t) = \frac{4t}{t+1}$$
 $r_2(t) = \frac{8t+10}{t+1}$,

(b) [3 pts] Give the area of the magic pizza as a function of t. (You do not need to simplify.)

(c) [3 pts] If one were to watch Marvin's magic pizza forever, with the changing $\theta(t), r_1(t)$ and $r_2(t)$, the area of the magic pizza would approach a certain value. What is this value?

Problem 8. Bobby the physicist has been studying strange signals coming from outer space. The signal strength S tends to be very large, with values ranging up to 10^{21} . Bobby is using a logarithmic scale to describe these signals. Taking S_0 to be a reference value, he has defined the signal γ value to be

$$\gamma = 4\log_{10}\left(\frac{S}{S_0}\right)$$

(a) [6 pts] Bobby is studying two signals with signal strengths S_1 and S_2 . S_2 is twice as large as S_1 . If γ_1 and γ_2 are the γ values for S_1 and S_2 , what is $\gamma_2 - \gamma_1$?

(b) [6 pts] Sheila the scientist has also been studying the signals, however she is using a different logarithmic scale. She has defined the β value of a signal S to be

$$\beta = \log_b \left(\frac{S}{S_0}\right).$$

for a certain base b and reference value S_0 . It turns out that a signal strength of 10^{21} has a signal β value of 100, and a signal strength of 10^9 has a signal β value of $33\frac{1}{3}$. What are S_0 and b? If possible, give an exact value for S_0 .