Math 120 Final

Winter 2005, Saturday March 12th.
Section: \qquad Name: \qquad

Student Number: \qquad

Instructions:

- You have 3 hours for this exam.
- One 8.5 by 11 inch page of handwritten notes (front and back) is allowed.
- Write your name and section on your page of notes. Turn your page of notes in with your exam.
- Calculators (scientific or graphing) are allowed.
- If you need more space, use the backside of a page. Indicate that you have done so.
- You must show your work for full credit. Answers obtained by guessing or reading a numerical solution from a graph on your calculator when an algebraic method is available do not receive full credit.
- Clearly indicate your answers (e.g., by boxing them).
- There are 8 problems, and 9 pages to the exam. Check to make sure your exam is complete.

Problem	Total Points	Points
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	12	
Total	96	

Problem 1. Mary is jogging on a straight line from the point $(-2,10)$ to the point $(14,-9)$. There is a donut shop located at the point $(4,7)$. (Assume units are in miles.) (a) [9 pts$]$ What are Mary's coordinates when she is closest to the donut shop?
(b) [3 pts] If Mary get's within 2.7 miles of a donut shop, she will stop her jog and get a donut! Does Mary stop her jog and get a donut? (Show work for full credit.)

Problem 2. Joey is trying to fire his model rocket over an embankment. The rocket starts at the point $(-4,0)$ and follows the path $y=20+3 x-\frac{1}{2} x^{2}$. The embankment starts at the point $(5,0)$ and follows a straight line to the point $(15,15)$, where the embankment ends. (Assume units are in feet.)
(a) [6 pts] Determine if the rocket collides with the embankment, and if it does, find the point where this collision occurs.

(b) [4 pts] The rocket launcher has a control dial on it. When the control dial is set to α, the path of the rocket is

$$
y=-\frac{1}{2} \alpha(x+4)(x-10 \alpha) .
$$

Joey would like the x coordinate for the vertex of the rocket path to occur at $x=15$ (where the embankment ends). What should α be set to in order for this to happen?
(c) [2 pts] With this value of α, find the height of the rocket at its vertex.

Problem 3 Let $u(t)$ be the basic step function:

$$
\mathrm{u}(\mathrm{t})=\left\{\begin{array}{l}
0 \text { if } t<0 \\
1 \text { if } 0 \leq t \leq 1 \\
0 \text { if } 1<t
\end{array}\right.
$$

a) $[4 \mathrm{pts}]$ Find the multipart rule for $f(t)=t^{2} \mathrm{u}\left(\frac{1}{4}(\mathrm{t}+1)\right)$
b) [4 pts] Find the multipart rule for $g(t)=f(t)+t u(\mathrm{t})+1$.
c) [2 pts] What is $g\left(\frac{1}{2}\right)$?
d) [2 pts] What is $g(3)$?

Problem 4. Suppose that

$$
f(x)=x+\sqrt{x^{2}+1}
$$

and that the domain for $f(x)$ is $x \geq 2$.
(a) $[8 \mathrm{pts}]$ Find $f^{-1}(x)$.
(b) $[4 \mathrm{pts}]$ What is the domain of $f^{-1}(x)$?

Problem 5. In the following picture, suppose that $a=10$ feet, and that the angle $\alpha=32^{\circ}$, the angle $\gamma=22^{\circ}$ and the angle $\beta=42^{\circ}$. Find the length of d. (Note the right angle at the lower right of the picture.)

Problem 6. Suppose that $f(t)$ is a sinusoidal function of time (in seconds), which oscillates between a minimum value of .5 and a maximum value of 2.5 . When $t=1, f(t)$ is at its minimum value. Between time $t=1$ and time $t=4, f(t)$ reaches its maximum value exactly twice. At time $t=4, f(t)$ is at its minimum value.
(a) $[6 \mathrm{pts}]$ Find $f(t)$.
(b) [6 pts] Suppose that the voltage output of an electrical circuit is $V(t)=e^{f(t)}$. Between $t=1$ and $t=4$, what percentage of the time is $V(t) \geq 7$?

Problem 7. Marvin the Magician is entertaining his guests with his magic pizza trick, he starts with half a pizza minus 10° from either end, as in the first figure. Then magically, the pizza shrinks, as the amount taken away on both ends is given by $\theta(t)=\frac{45 t+10}{t+1}$ where θ is in degrees and t is in seconds (as in the second figure). The radius of the pizza is 10 inches. (a) $[6 \mathrm{pts}]$ Is the area of the magic pizza ever $90 \mathrm{in}^{2}$? If so, find this time.

For Marvin's next trick, the angle taken away on either side is still given by $\theta(t)$ as above, but at the same time the inner radius r_{1}, and outer radius r_{2}, as in the picture below, are changing as well. They are changing according to

$$
r_{1}(t)=\frac{4 t}{t+1} \quad r_{2}(t)=\frac{8 t+10}{t+1}
$$

(b) [3 pts] Give the area of the magic pizza as a function of t. (You do not need to simplify.)

(c) [3 pts] If one were to watch Marvin's magic pizza forever, with the changing $\theta(t), r_{1}(t)$ and $r_{2}(t)$, the area of the magic pizza would approach a certain value. What is this value?

Problem 8. Bobby the physicist has been studying strange signals coming from outer space. The signal strength S tends to be very large, with values ranging up to 10^{21}. Bobby is using a logarithmic scale to describe these signals. Taking S_{0} to be a reference value, he has defined the signal γ value to be

$$
\gamma=4 \log _{10}\left(\frac{S}{S_{0}}\right)
$$

(a) [6 pts] Bobby is studying two signals with signal strengths S_{1} and $S_{2} . S_{2}$ is twice as large as S_{1}. If γ_{1} and γ_{2} are the γ values for S_{1} and S_{2}, what is $\gamma_{2}-\gamma_{1}$?
(b) [6 pts] Sheila the scientist has also been studying the signals, however she is using a different logarithmic scale. She has defined the β value of a signal S to be

$$
\beta=\log _{b}\left(\frac{S}{S_{0}}\right) .
$$

for a certain base b and reference value S_{0}. It turns out that a signal strength of 10^{21} has a signal β value of 100 , and a signal strength of 10^{9} has a signal β value of $33 \frac{1}{3}$. What are S_{0} and b ? If possible, give an exact value for S_{0}.

