Math 120 A, B - Winter 2009

Final Exam

March 14, 2009
Answers

1. 87.0494546 feet
2. 26.61 seconds.
3. 17.9507 years after 2000 .
4. 6.184685 hours
5. (a) $x=-5+3 t, y=5-t$ (b) $x=t, y=9-3 t$ (c) 2.25 seconds
6.

$$
D(t)= \begin{cases}4 t & \text { if } 0 \leq t \leq \frac{1}{4} \\ \sqrt{1+\left(4\left(t-\frac{1}{4}\right)\right)^{2}} & \text { if } \frac{1}{4}<t<\frac{3}{4} ; \\ \sqrt{2^{2}+\left(1-4\left(t-\frac{3}{4}\right)\right)^{2}} & \text { if } \frac{3}{4}<t<\frac{3}{2}\end{cases}
$$

7. (a) We have

$$
f(g(x))=f(3 x-1)=3 x-1+2\left\{\begin{array}{ll}
3 x-4 & \text { if } 3 x-4 \geq 0 \\
4-3 x & \text { if } 3 x-4<0
\end{array}= \begin{cases}9 x-9 & \text { if } x \geq 4 / 3 \\
7-3 x & \text { if } x<4 / 3\end{cases}\right.
$$

To solve $f(g(x))=-4 x$ we must solve two equations

$$
9 x-9=-4 x \text { subject to } x \geq 4 / 3
$$

and

$$
7-3 x=-4 x \text { subject to } x<4 / 3 .
$$

The first equation yields $x=9 / 13$ which is not greater than $4 / 3$, so it is not a solution.
The second yields $x=-7$ which is less than $4 / 3$, so it is a solution.
Thus the only solution is $x=-7$.
(b) We have

$$
h(x)=g(\sqrt{x})+x+1=3 \sqrt{x}-1+x+1=3 \sqrt{x}+x .
$$

Setting $h(x)=y$ and solving for x we have

$$
\begin{gathered}
3 \sqrt{x}+x=y \\
3 \sqrt{x}=y-x \\
9 x=(y-x)^{2}=y^{2}-2 x y+x^{2} \\
x^{2}-2 x y-9 x+y^{2}=0 \\
x^{2}-(2 y+9) x+y^{2}=0
\end{gathered}
$$

and so

$$
x=\frac{2 y+9 \pm \sqrt{36 y+81}}{2}=y+\frac{9}{2} \pm \sqrt{9 y+\frac{81}{4}} .
$$

Because of the \pm, we much choose one or the other to get the inverse function. A good way to do this is to use any value of h. For instance, we see that $h(0)=0$. Hence, $h^{-1}(0)$ must be zero as well. If we substitute zero for y in the last expression, we find

$$
x=0+\frac{9}{2} \pm \sqrt{\frac{81}{4}}
$$

which equals zero only if we take the "-" option. Thus the inverse function is

$$
h^{-1}(x)=x+\frac{9}{2}-\sqrt{9 x+\frac{81}{4}} .
$$

