Math 120 - Winter 2015
 Final Exam
 March 14, 2015

Name: \qquad Student ID no. :
Signature: \qquad Section: \qquad

1	12	
2	13	
3	13	
4	9	
5	15	
6	13	
7	12	
8	13	
Total	100	

- This exam consists of EIGHT problems on NINE pages, including this cover sheet.
- Show all work for full credit.
- You may use a scientific calculator during this exam. Graphing calculators are not permitted. Other electronic devices are not allowed, and should be turned off and put away for the duration of the exam.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 170 minutes to complete the exam.

1. [12 points] In the following figure (not drawn to scale), find x.

$$
\begin{aligned}
& \frac{x}{z}=\tan \left(40^{\circ}\right) \longrightarrow x=z \tan \left(40^{\circ}\right) \\
& \frac{x+y}{z}=\tan \left(57^{\circ}\right) \longrightarrow x+y=z \tan \left(57^{\circ}\right) \longrightarrow x+y=(z+4) \tan \left(50^{\circ}\right) \\
& \frac{x+y}{z+4}=\tan \left(50^{\circ}\right) \longrightarrow \text { set equal? } \\
& z \tan \left(57^{\circ}\right)=z \tan \left(50^{\circ}\right)+4 \tan \left(50^{\circ}\right) \\
& z\left(\tan \left(57^{\circ}\right)-\tan \left(50^{\circ}\right)\right)=4 \tan \left(50^{\circ}\right) \\
& z=\frac{4 \tan \left(50^{\circ}\right)}{\tan \left(57^{\circ}\right)-\tan \left(50^{\circ}\right)}
\end{aligned}
$$

So... $x=z \tan \left(40^{\circ}\right)$

$$
x=\left(\frac{4 \tan \left(50^{\circ}\right)}{\tan \left(57^{\circ}\right)-\tan \left(50^{\circ}\right)}\right) \tan \left(40^{\circ}\right) \approx 11.49
$$

2. The number of trees in Treeattle grows exponentially.

Treeattle had 600 trees in the year 2008, and 1100 trees in the year 2015.
(a) [4 points] Write a function $f(x)$ for the number of trees in Treeattle, x years after the year 2000 .

$$
\begin{aligned}
& f(x)=A_{0} b^{x} \\
& f(8)=600=A_{0} b^{8} \\
& f(15)=1100=A_{0} b^{15} \\
& \downarrow \text { Divide } \\
& b^{7}=\frac{11}{6} \\
& b=\left(\frac{11}{6}\right)^{1 / 7} \approx 1.09045
\end{aligned}
$$

$$
A_{0}\left(\left(\frac{11}{6}\right)^{1 / 7}\right)^{8}=600
$$

$$
A_{0}=\frac{600}{\left(\frac{11}{6}\right)^{8 / 7}} \approx 300.13
$$

$$
f(x)=300.13(1.09045)^{x}
$$

(b) [6 points] Compute $f^{-1}(x)$, the inverse of the function you found in part (a).

$$
\begin{aligned}
& x=300.13(1.09045)^{y} \\
& \frac{x}{300.13}=(1.09045)^{y} \\
& \ln \left(\frac{x}{300.13}\right)=y=\frac{\ln \left(\frac{x}{300.13}\right)}{\ln (1.09045)}
\end{aligned}
$$

(c) [3 points] When will there be 4000 trees in Treeattle? Round your answer to the nearest year.

$$
f^{-1}(4000)=\frac{\ln \left(\frac{4000}{300.13}\right)}{\ln (1.09045)} \approx 29.9 \text {, so the year } 2030
$$

3. (a) [3 points] Write a function $f(x)$ for an upper semicircle of radius 4 centered at $(6,2)$, defined over the interval $2 \leq x \leq 10$.

(b) [3 points] Write a function $g(x)$ for the curve obtained by taking $f(x)$ from part (a), moving it 2 units to the left, and then scaling it horizontally by a factor of $1 / 2$.

(c) [4 points] Find the domain and range of $g(x)$.

(d) [3 points] Is $g(x)$ one-to-one? Explain, briefly.

No, it fails the horizontal line test!

4. [9 points] In the following configuration, wheels A and B are connected by a belt, as are wheels C and D. Wheels B and C are connected by an axle.

Wheel A has a radius of 7 feet and rotates at a speed of 6 revolutions per minute.
Wheel B has a radius of 4 feet, Wheel C has a radius of 8 feet, and Wheel D has a radius of 3 feet.

How many seconds does it take Wheel D to make a complete rotation?

$$
\begin{aligned}
\omega & =\frac{12 \pi}{60} \mathrm{rad} / \mathrm{sec} \\
& =\frac{\pi}{5} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

5. Tori and Harry are both running counter-clockwise around a circular track of radius 10 meters. Tori begins at the northernmost point and Harry begins at the easternmost point. Harry runs faster.
(a) [4 points] Tori first reaches the southernmost point after 8 seconds.

What is Tori's speed, in meters per second?

$$
W=\frac{\pi}{8} \mathrm{rad} / \mathrm{sec} \quad 2 \mathrm{~m}=\frac{\pi}{8} \cdot 10=\frac{5 \pi}{4} \approx 3.93 \mathrm{~m} / \mathrm{s}
$$

(b) [6 points] Harry begins running at the same time as Tori, and catches up to her in 11 seconds.

What is Harry's speed, in meters per second?
Tori has a head start of $\pi / 2$ rad, so Harry runs $\frac{\pi}{2}$ rad more than her in 11 seconds. Tori runs ($\frac{\pi}{8}(11)$ radians, so Harry runs $\left(\frac{\pi}{8} \cdot \|\right)+\frac{\pi}{2}=\frac{15 \pi}{8}$ radians
in $I I$ seconds. His ω is $\frac{\frac{15 \pi}{8}}{11}=\frac{15 \pi}{88} \mathrm{rad} / \mathrm{sec}$, and so:

$$
v=\omega r=\frac{15 \pi}{88} \cdot 10 \approx 5.355 \mathrm{~m} / \mathrm{s}
$$

(c) [5 points] Impose a coordinate system with units in meters and the origin at the center of the circle. After 80 seconds, what are Harry's coordinates?

$$
\left.\begin{array}{l}
x=r \cos \left(\theta_{0}+\omega t\right)+x_{0} \\
y=r \sin \left(\theta_{0}+\omega t\right)+y_{0} \\
r=10 \quad t=80 \\
\theta_{0}=0 \\
\omega=\frac{15 \pi}{88} \quad x_{0}=0 \\
y_{0}=0
\end{array}\right\} \quad \begin{aligned}
& x=10 \cos \left(\frac{15 \pi}{88} \cdot 80\right) \approx 4.154 \\
& y=10 \sin \left(\frac{15 \pi}{88} \cdot 80\right) \approx-9.096
\end{aligned}
$$

6. Consider the following multipart function: 2

$$
f(x)= \begin{cases}x^{2}+6 x+8 & \text { if }-4 \leq x<-1 \\ 3 \sin \left(\frac{2 \pi}{5}(x+1)\right)+4 & \text { if }-1 \leq x<9\end{cases}
$$

(a) [6 points] Sketch a graph of $f(x)$. Label your graph clearly.

(b) [7 points] Find all solutions to the equation $f(x)=2$.

First piece:
$2=x^{2}+6 x+8 \quad 2=3 \sin \left(\frac{2 \pi}{5}(x+1)\right)+4$
$0=x^{2}+6 x+6$
$x=\frac{-6 \pm \sqrt{36-24}}{2}$
$\frac{-2}{3}=\sin \left(\frac{2 \pi}{5}(x+1)\right)$
$\sin ^{-1}\left(\frac{-2}{3}\right)=\frac{2 \pi}{5}(x+1)$
$\left.x=\frac{-6+\sqrt{12}}{2}\right\} y u p$
$x=\frac{5}{2 \pi}\left(\sin ^{-1}\left(\frac{-2}{3}\right)\right)-1 \approx-1.58069$
Symmetry solution
$=2 C+\frac{B}{2}-p=2.08069$
So overall: $\frac{-6+\sqrt{12}}{2}$,
2.08069,
3.41931,
7.08069, and
8.41931
7. Chloë and and Joë are walking around the coördinate plane. They both begin walking at the same time, in straight lines at constant speeds.
(a) [3 points] Chloë starts at $(-2,-3)$ and walks east at a speed of 4 units per second.

Give parametric equations for Chloë's coördinates after t seconds.

$$
\begin{aligned}
& x=-2+4 t \\
& y=-3
\end{aligned}
$$

(b) [4 points] Joë begins at the point $(6,3)$ and walks towards the point $(14,-5)$, reaching it in 4 seconds.

Give parametric equations for Joë's coördinates after t seconds.

$$
\begin{array}{ll}
x_{0}=6 & y_{0}=3 \\
x_{1}=14 & y_{1}=-5 \\
\Delta x=8 & \Delta y=-8 \\
\Delta t=4 & x=6+2 t \\
x=6+\frac{8}{4} t & y=3-2 t \\
y=3+\frac{-8}{4} t & y
\end{array}
$$

(c) [5 points] When are Chloë and Joë closest together?

$$
\begin{aligned}
d i s t & =\sqrt{((-2+4 t)-(6+2 t))^{2}+(-3-(3-2 t))^{2}} \\
& =\sqrt{(-8+2 t)^{2}+(-6+2 t)^{2}} \\
& =\sqrt{64-32 t+4 t^{2}+36-24 t+4 t^{2}} \\
& =\sqrt{8 t^{2}-56 t+100} \text { quadratic! }
\end{aligned}
$$

8. Let $f(x)$ be the linear-to-linear rational function with an x-intercept of 5 and a y-intercept of -4 , passing through the point $(35,-6)$.
(a) [7 points] Write a formula for $f(x)$.

$$
\begin{aligned}
& f(x)=\frac{a x+b}{x+d} \\
& f(0)=-4 \rightarrow \frac{b}{d}=-4 \rightarrow b=-4 d ?-4 d=-5 a, 50 a=\frac{4}{5} d \\
& f(5)=0 \rightarrow \frac{5 a+b}{5+d}=0 \rightarrow b=-5 a \\
& f(35)=-6 \rightarrow \frac{35 a+b}{35+d}=-6 \rightarrow 35 a+b=-210-6 d \\
& \quad \begin{aligned}
& \downarrow(-4) \\
35(-4 d) & =-210-6 d \\
30 d & =-210
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
30 d & =-210 \\
d & =-7 \\
a & =\frac{4}{5}(-7)=-5.6 \xrightarrow{3} \quad f(x)=\frac{-5.6 x+28}{x-7}
\end{aligned}
$$

(b) [2 points] Write the domain and range of $f(x)$. Domain: Everything but the vertical asymptote:
Range: Everything but the Lori zontal asymptote: $(-\infty,-5.6) \cup(-5.6, \infty)$
(c) [4 points] Solve the equation $f(f(x))=2$.

$$
\begin{aligned}
& f(f(x))=2 \\
& f\left(\frac{-5.6 x+28}{x-7}\right)=2 \\
& \frac{-5.6\left(\frac{-5.6 x+28}{x-7}\right)+28}{\left(\frac{-5.6 x+28}{x-7}\right)-7}=2
\end{aligned}
$$

