Worksheet for Week 4: Limits and Derivatives

This worksheet reviews limits and the definition of the derivative with graphs and computations.

1. Answer the following questions using the graph $y=f(x)$ below. The function $f(x)$ has domain all numbers except 7 as seen from the graph.

(h) $\lim _{h \rightarrow 0^{+}} \frac{f(-8+h)-f(-8)}{h}=$
(a) $\lim _{x \rightarrow 4} f(x)=$
(i) $\lim _{h \rightarrow 0} \frac{f(-8+h)}{h}=$
(b) $\lim _{x \rightarrow 7^{+}} f(x)=$
(c) $f^{\prime}(0)=$
(j) $\lim _{h \rightarrow 0} \frac{f(-6+h)-f(-6)}{h}=$
(d) $\lim _{x \rightarrow-3} f(x)=$
(k) $\lim _{h \rightarrow 0^{+}} \frac{f(-3+h)+5}{h}=$
(e) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=$
(1) List all the intervals where the derivative $f^{\prime}(x)$ is negative.
(f) $\lim _{h \rightarrow 0} \frac{f(3+h)-5}{h}=$
(m) List all the intervals where the derivative $f^{\prime}(x)$ is decreasing.
(g) $f^{\prime}(5)=$
(n) A critical value for $f(x)$ is any x in the domain of $f(x)$ where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined. List all critical values of $f(x)$.
2. Evaluate the following limits and then match the functions with their graphs shown below using your limit results. Some will require you to compute left and right hand limits.
(a) $\lim _{x \rightarrow 5} \frac{1}{x-5}=$
(b) $\lim _{x \rightarrow 5} \frac{-x}{(x-5)^{2}}=$
(c) $\lim _{x \rightarrow 5} \frac{-x^{2}-2 x+35}{x^{2}-4 x-5}=$
(d) $\lim _{x \rightarrow 5} \frac{x-\sqrt{3 x+10}}{x-5}=$

Page 2
3. Use the definition of the derivative $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ to compute $f^{\prime}(3)$ for the following functions. Then match the functions with their graphs shown below using your limit results.
(a) $f(x)=(x-3)^{\frac{1}{3}}+2$
(b) $f(x)=(x-3)^{\frac{2}{3}}+2$
(c) $f(x)=|x-3|+2$

Page 3
4. Find, if any, the horizontal asymptotes of the following functions and use that information to match them with their graphs on the next page. Each question should have two limit computations with $x \rightarrow \infty$ and $x \rightarrow-\infty$.
(a) $f(x)=\frac{(x+1)^{4}}{x^{4}+3 x^{2}+7 x+10}$
(b) $f(x)=\frac{x+3}{x^{2}+8 x+26}$
(c) $f(x)=\frac{x^{3}+4 x+9}{x^{2}+4}$
(d) $f(x)=-7 x^{4}+x^{3}-12 x+20$
(e) $f(x)=\frac{\sqrt{8 x^{2}+4}}{x+2}$
(f) $f(x)=3 e^{x}$
(g) $f(x)=7-e^{-x}$

When you match the functions with these graphs, add (if any) horizontal asymptotes to the pictures.

Page 6

