1 Stewart, section 7.8: \#1, 3, 7, 9, 13, 19, 28, 29, 31, 64, 69, 70
2 Stewart, section 8.1: \#1, 2, 9, 11, 12, 17, 24 (omit calculator part), 25 (omit calculator part)
3 Let k be greater than 1 .
a) Write a definite integral for the arclength of $y=x^{k}$ from $x=0$ to $x=b$. Do not try to solve the integral.
b) One case when this integral can be easily evaluated is when $k=\frac{3}{2}$. In that case use a substitution to evaluate the integral and find a formula for the arclength in terms of b.
c) Use an inverse trig substitution to find a formula for the arclength in the case when $k=2$.
d) Use Simpson's Rule with 6 sub-intervals to estimate the arclength in the case when $k=3$ and $b=1$.

4 The formula for the arc length of a curve given parametrically by $(x(t), y(t))$, for $a \leq t \leq b$, is

$$
L=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

A path of a point on the edge of a rolling circle of radius R is a cycloid, given by

$$
\begin{aligned}
& x(t)=R(t-\sin t) \\
& y(t)=R(1-\cos t)
\end{aligned}
$$

where t is the angle the circle has rotated.
Find the length of one "arch" of this cycloid, that is, find the distance traveled by a small stone stuck in the tread of a tire of radius R during one revolution of the rolling tire.

5 The rocket in Problem 3 of Week 4 required the following force when the rocket was at a distance of x from the center of the moon:

$$
F(x)=\frac{R^{2} P}{x^{2}} \text { pounds }
$$

a) The total amount of work done raising the payload from the surface (an altitude of 0 , so $x=R$) to an altitude of $R(x=2 R)$ is

$$
W=\int_{a}^{b} F(x) d x=\int_{R}^{2 R} \frac{R^{2} P}{x^{2}} d x=\square \text { mile-pounds. }
$$

b) How much work will be needed to raise the payload from the surface of the moon to the "end of the universe"?

