Math 125, Sections C and F, Fall 2014, Midterm I

October 16, 2014

Name

TA/Section

Instructions.

- There are 4 questions. The exam is out of 40 points.
- You are allowed to use one page of notes written only on one side of the sheet in your own handwriting. Hand in you note sheet with your exam.
- Calculators are NOT allowed. Put away ALL electronic devices.
- For your integrals you may use the following formulas. Anything else must be justified by your work.

$$
\begin{array}{rlrl}
\int x^{n} d x & =\frac{x^{n+1}}{n+1}+C, n \neq-1 & \int e^{x} d x=e^{x}+C & \int \frac{1}{x} d x=\ln |x|+C \\
\int \sin x d x & =-\cos x+C \quad \int \cos x d x=\sin x+C \quad \int \sec ^{2} x d x=\tan x+C \\
\int \csc x \cot x d x & =-\csc x+C \quad \int \sec x \tan x d x=\sec x+C=\quad \int \csc ^{2} x d x=-\cot x+C \\
\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C \quad \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C
\end{array}
$$

- Show your work. If I cannot read or follow your work, I cannot grade it. You may not get full credit for a right answer if your answer is not justified by your work. If you continue at the back of a page, make a note for me.

Question	points
1	
2	
3	
4	
Total	

1. Evaluate the following integrals.
(a) (4 points) $\int 7 \cos (\theta) \sin ^{2}(\theta) d \theta$
(b) (5 points) $\int_{0}^{1} \frac{x}{1+5 x} d x$
(c) (1 point) $\int_{-1}^{1} x e^{x^{8}} d x$
2. Define $g(x)=\int_{4}^{x} f(t) d t$ where the graph of $f(t)$ is given below.

(a) (5 points) Evaluate the following:
$g(0)=$
$g(4)=$
$g(16)=$
$g^{\prime}(17)=$
$g^{\prime \prime}(11)=$
(b) (2 points) Express $g(22)-g(18)$ as a definite integral and estimate it with $n=4$ and leftpoints. This question will be graded with a reasonable allowance for estimation error.
(c) (3 points) If $h(x)=\int_{4}^{x^{3}} f(t) d t$, what is $h^{\prime}(2) ?$
3. (9 points) Find the area of the region shown below bounded by the curve $x=-y^{3}+y^{2}$ and the line $x=-2 y$.

4. (a) (3 points) Sketch the region between the parabola $y=x^{2}-12 x+32$ and the line $y=3 x-4$. Label all intersection points.
(b) (3 points) Set up an integral to calculate the volume of the solid formed by rotating this region about the y-axis. Do NOT integrate.
(c) (3 points) Set up an integral to calculate the volume of the solid formed by rotating this region about the horizontal line $y=40$. Do NOT integrate.
(d) (2 points) Set up an integral to calculate the volume of the solid formed by rotating this region about the vertical line $x=4$. Do NOT integrate. This is a bit tricky.
