Your Name

Your Signature
\square

Student ID \#

Circle quiz section and print TA's name:
EA EB EC ED FA FB FC FD

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8 \frac{1}{2}$ " $\times 11$ " sheet of handwritten notes (both sides).
- You can use only Texas Instruments TI-30X calculator.
- Give your answers in exact form, not decimals, unless instructed otherwise.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Check your work carefully. We will award only limited partial credit.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 6 pages, plus this cover sheet. Make sure that your exam is complete.

Question	Points	Score
1	10	
2	10	
3	20	
4	10	
5	10	
6	10	
Total	70	

1. (10 points) Estimate the area under the graph of the function $f(x)=\sqrt{x}(\ln x)^{2}$ between $x=1$ and $x=4$. Use a Riemann sum with 4 subintervals. Use the left point rule. Give your answer as a decimal number with 4 significant digits.

Solution:

We have $\Delta x=(4-1) / 4=3 / 4=0.75$. The formula for the left point sum approximation L_{n} with $n=4$ is

$$
L_{4}=0.75\left(\sqrt{1}(\ln 1)^{2}+\sqrt{1.75}(\ln 1.75)^{2}+\sqrt{2.5}(\ln 2.5)^{2}+\sqrt{3.25}(\ln 3.25)^{2}\right) \approx 3.18469 .
$$

2. (10 points) Find the total (unsigned) area between the graphs of $f(x)=(2 / \pi)^{3} x^{3}$ and $g(x)=\sin x$. Give the answer in exact form.

Hint: Sketch the graphs of the functions. Find x such that $f(x)=1$.

Solution:

We have $f(\pi / 2)=(2 / \pi)^{3}(\pi / 2)^{3}=1$ and $g(\pi / 2)=\sin (\pi / 2)=1$. Similarly, $f(-\pi / 2)=(2 / \pi)^{3}(-\pi / 2)^{3}=$ -1 and $g(-\pi / 2)=\sin (-\pi / 2)=-1$. Also, $f(0)=(2 / \pi)^{3} 0^{3}=0$ and $g(0)=\sin 0=0$. We conclude that the graphs of the functions f and g intersect at $x=-\pi / 2,0$ and $\pi / 2$.
A sketch of the graphs of the two functions shows that the graph of g lies below the graph of f on the interval $(-\pi / 2,0)$ and the graph of f lies below the graph of g on the interval $(0, \pi / 2)$.
The area between the two graphs is equal to

$$
\begin{gathered}
\int_{-\pi / 2}^{0}\left((2 / \pi)^{3} x^{3}-\sin x\right) d x+\int_{0}^{\pi / 2}\left(\sin x-(2 / \pi)^{3} x^{3}\right) d x \\
=\left.\left((2 / \pi)^{3}(1 / 4) x^{4}+\cos x\right)\right|_{-\pi / 2} ^{0}+\left.\left(-\cos x-(2 / \pi)^{3}(1 / 4) x^{4}\right)\right|_{0} ^{\pi / 2} \\
=\left(1-(2 / \pi)^{3}(1 / 4)(-\pi / 2)^{4}\right)+\left(-(2 / \pi)^{3}(1 / 4)(\pi / 2)^{4}-(-1)\right)=2-\pi / 4 \approx 1.2146
\end{gathered}
$$

3. Compute the following integrals. In part (a), give the answer in the decimal form with at least three significant digits.
(a) (10 points) $\int_{2}^{3} \frac{1}{x^{2}} \tan \left(\frac{x+1}{x}\right) d x$

Solution:

We use the substitution rule with $u=\frac{x+1}{x}, d u=-\left(1 / x^{2}\right) d x$. When $x=2$ then $u=3 / 2$. When $x=3$ then $u=4 / 3$.

$$
\begin{gathered}
\int_{2}^{3} \frac{1}{x^{2}} \tan \left(\frac{x+1}{x}\right) d x=\int_{3 / 2}^{4 / 3}(-\tan (u)) d u=\int_{4 / 3}^{3 / 2} \tan (u) d u=\left.\ln |\sec u|\right|_{u=4 / 3} ^{u=3 / 2} \\
=\ln |\sec (3 / 2)|-\ln |\sec (4 / 3)| \approx 1.2016
\end{gathered}
$$

(b) (10 points) $\int \csc ^{2} z\left(\cot z+\sin ^{2} z\right) d z$

Solution:

Recall that $\csc z=1 / \sin z$. We have

$$
\int \csc ^{2} z\left(\cot z+\sin ^{2} z\right) d z=\int\left(\csc ^{2} z \cot z+(1 / \sin z)^{2} \sin ^{2} z\right) d z=\int \csc z \cot z d z+\int 1 d z
$$

For the second integral, we have $\int 1 d z=z+C$. For the first integral, we use the substitution $u=\cot z$, $d u=-\csc ^{2} z d z$.

$$
\begin{gathered}
\int \csc ^{2} z \cot z d z=\int-u d u=-u^{2} / 2+C=-(\cot z)^{2} / 2+C \\
\int \csc z\left(\cot z+\sin ^{2} z\right) d z=-(\cot z)^{2} / 2+z+C
\end{gathered}
$$

4. (10 points) Find $f^{\prime}(\pi / 4)$ if

$$
f(x)=\int_{\sin x}^{\cos x}\left(s^{2}+s\right) d s
$$

Give your answer in exact simplified form.

Solution:

$$
f^{\prime}(x)=\left(\cos ^{2} x+\cos x\right)(-\sin x)-\left(\sin ^{2} x+\sin x\right) \cos x
$$

Recall that $\sin (\pi / 4)=\cos (\pi / 4)=\sqrt{2} / 2$.

$$
f^{\prime}(\pi / 4)=(1 / 2+\sqrt{2} / 2)(-\sqrt{2} / 2)-(1 / 2+\sqrt{2} / 2) \sqrt{2} / 2=-1-\sqrt{2} / 2 \approx-1.70711
$$

5. (10 points) An object was thrown up from the ground level. It reached the highest point on its trajectory after 3 seconds.
(i) What was the initial upward velocity?
(ii) How high above the ground was the highest point on the trajectory?

Use the metric system. Assume that the gravitational acceleration is $-9.8 \mathrm{~m} / \mathrm{sec}^{2}$. Give your answers as decimal numbers with 3 significant digits.

Solution:

Let $s(t)$ be the altitude of the object, $v(t)$ its velocity, and $a(t)$ its acceleration. We know that $a(t)=-9.8$ so

$$
v(t)=\int a(t) d t=\int(-9.8) d t=-9.8 t+C_{1} .
$$

Let the initial velocity be called v_{0}. Then $v(0)=v_{0}$ and

$$
v(0)=-9.8 \cdot 0+C_{1}=v_{0}
$$

so $C_{1}=v_{0}$.

$$
v(t)=-9.8 t+v_{0} .
$$

We have

$$
s(t)=\int v(t) d t=\int\left(-9.8 t+v_{0}\right) d t=-4.9 t^{2}+v_{0} t+C_{2} .
$$

We know that $s(0)=0$.

$$
\begin{gathered}
s(0)=-4.9 \cdot 0^{2}+v_{0} \cdot 0+C_{2}=0 \\
C_{2}=0 \\
s(t)=-4.9 t^{2}+v_{0} t
\end{gathered}
$$

Let the maximum altitude be called m. Then there is only one t_{m} such that $s\left(t_{m}\right)=m$. Hence the equation

$$
-4.9 t^{2}+v_{0} t_{m}=m
$$

has only one solution. The quadratic equation

$$
-4.9 t^{2}+v_{0} t-m=0
$$

has solutions

$$
t_{1,2}=\frac{-v_{0} \pm \sqrt{v_{0}^{2}-4(-4.9)(-m)}}{2(-4.9)}
$$

They reduce to a single solution if

$$
\begin{equation*}
v_{0}^{2}-4(-4.9)(-m)=0 \tag{*}
\end{equation*}
$$

and then the only solution is $t_{m}=\frac{-v_{0}}{2(-4.9)}$. So $3=\frac{-v_{0}}{2(-4.9)}$. Solving for v_{0}, we obtain $v_{0}=6 \cdot 4.9=29.4$ ($\mathrm{m} / \mathrm{sec}$).

We now substitute $v_{0}=29.4$ into the equation (*) to see that

$$
29.4^{2}-4(-4.9)(-m)=0 .
$$

Solving for m yields $m=29.4^{2} /(4 \cdot 4.9)=44.1(\mathrm{~m})$.
6. (10 points) Consider the region A above the x-axis, below the graph of $y=\frac{1}{x} e^{x} \sin \left(e^{x}\right)$, between $x=\ln (\pi / 2)$ and $x=\ln \pi$. Compute the volume of the solid of revolution obtained by rotating the region A about the y-axis. Do not compute the area of the region A. Give the answer in exact form.

Solution:

We will use the shell method. The volume is equal to

$$
\int_{\ln (\pi / 2)}^{\ln \pi} 2 \pi x\left(\frac{1}{x} e^{x} \sin \left(e^{x}\right)\right) d x=\int_{\ln (\pi / 2)}^{\ln \pi} 2 \pi e^{x} \sin \left(e^{x}\right) d x
$$

We use the substitution $u=e^{x}$ with $d u=e^{x} d x$. If $x=\ln (\pi / 2)$ then $u=\pi / 2$. If $x=\ln \pi$ then $u=\pi$.

$$
\int_{\ln (\pi / 2)}^{\ln \pi} 2 \pi e^{x} \sin \left(e^{x}\right) d x=\int_{\pi / 2}^{\pi} 2 \pi \sin u d u=-\left.2 \pi \cos u\right|_{\pi / 2} ^{\pi}=2 \pi \approx 6.283
$$

