Your Name

Student ID \#

Professor's Name

Quiz Section

TA's Name
\square

PLEASE READ the DIRECTIONS below:

- Do not open the test until instructed to do so. This test has 5 problems on 5 pages. Once the test starts, please check that you have a complete exam.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ page of handwritten notes. Do not share notes.
- Only a Ti-30x IIS calculator is allowed. Silence your cell phone and put it away.
- In order to receive credit, you MUST SHOW YOUR WORK. If we cannot tell how you are getting your answers, you may receive little or no credit, even if the answer happens to be correct.
- Simplify your answers as much as possible but leave them in exact form (e.g. $\pi \sqrt{2}+\frac{1}{2}$). Do not give decimal approximations, unless otherwise instructed.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Read each question carefully, before and after answering it. Do your best, and show your work.
- Take a deep breath. You've got this. Good luck!

Problem	Total Points	Score
1	12	
2	10	
3	8	
4	10	
5	10	
Total	50	

1. [12 points] Evaluate the following integrals. Show all steps. Simplify and box your answer.
(a) $[4$ points $] \int \frac{1+x^{2}}{x^{3}} d x$
(b) [4 points] $\int \frac{x^{3}}{1+x^{2}} d x$
(c) $[\mathbf{4}$ points $] \int_{0}^{2} y^{2} e^{-y^{3}} d y$
2. [10 points]
(a) [5 points] Let $F(x)=\int_{1}^{\sqrt{x}} \arctan (t) d t$. Evaluate $F(1)$ and $F^{\prime}(1)$.
(b) [5 points] Compute $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{\left(1+\frac{9 i}{n}\right)^{2}} \frac{9}{n}\right)$ by writing it as a definite integral and then solving the integral.
3. [8 points] The widths across a lake were measured at 40 ft intervals.

(a) Use R_{6} to estimate the area of the lake (right endpoints, with $n=6$ subintervals)
(b) Use the midpoint rule with the given data to give another estimate of the lake area.
4. [10 points] For each of the following, set up a definite integral that represents the volume described in the problem. DO NOT SIMPLIFY OR EVALUATE the integrals.
(a) [6 points] Let R be the region enclosed between the graphs of $f(x)=4 x-x^{2}$ and $g(x)=x$. The region R is rotated about the vertical line $x=5$ to form a solid of revolution.
(b) [4 points] Let S be the solid shown below. Each cross section of S by a plane perpendicular to the x-axis for $0 \leq x \leq \pi$ is an isosceles right triangle, whose base equals its height (see the figure).

isoceles right triangle cross sections
5. [10 points] Pete is driving his car along a straight and very busy street. He starts at his work place and needs to deliver a package to a customer. Being distracted, he starts going in the wrong direction, but realizes his mistake after a while. The velocity of his car at t hours during his trip is given by $v(t)=120 t^{2}-70 t$, in miles per hour.
(a) [4 points] Pete reaches his customer's office after one hour. How far away is the customer's office from Pete's work place?
(b) [$\mathbf{6}$ points] Pete's car gets 20 miles per gallon of fuel. How much fuel did Pete use up for this journey? Round your answer to two decimal digits.
