Your Name (please PRINT clearly)

Student ID

PLEASE READ DIRECTIONS BELOW:

- Do not open the test until instructed to do so.
- The exam pages are double-sided. Once the exam starts, check that you have a complete exam: there should be 7 questions on 3 double-sided pages.
- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ page of handwritten notes. Do not share notes.
- Only a Ti-30x IIS calculator is allowed. **Turn off your cell phone and put it away until the exam is over.**
- In order to receive credit, you **MUST SHOW YOUR WORK**. If we cannot tell how you are getting your answers, you may receive little or no credit, even if the answer happens to be correct.
- Simplify your answers as much as possible but leave them in exact form (e.g. $\pi\sqrt{2} + \frac{1}{2}$). Do not give decimal approximations, except when otherwise instructed.
- Do not write too close to the edge of pages. Place a box around YOUR FINAL ANSWER to each question.
- Raise your hand if you have a question.
- Read each question carefully, before and after answering it. Do your best, and show your work. Good luck!

Problem	Points	Score
1	12	
2	6	
3	4	
4	8	
5	6	
6	6	
7	8	
Total	50	

1. (12 points) Evaluate the following integrals. Show all steps. Simplify and box your answer.

(a)
$$\int \frac{10x^2}{\sqrt{2-x^3}} + \frac{3}{\sqrt{1-x^2}} \, dx$$

(b)
$$\int_{-\pi/3}^{\pi} |\sin(x)| \, dx$$

2. (6 points) A car travels along a straight road. The following table contains sample points of the velocity of the car, sampled every 10 minutes over the first hour of driving.

t (hrs.)	v(t) (mph)
0	20
1/6	40
2/6	-20
3/6	-40
4/6	-30
5/6	10
1	60

Use the **right endpoints** to estimate:

- (a) the total distance driven in the first hour:
- (b) the displacement of the car after the first hour:

3. (4 points) Which of the functions labeled F(x) in (a)-(d) below satisfy both conditions:

$$F'(x) = e^{x^2}$$
 and $F(2) = 0$?

For each, state Yes or No. If "No" indicate which of the conditions fail.

(a)
$$F(x) = \int_0^x e^{t^2} dt$$

(b) $F(x) = \int_{2}^{x} e^{t^{2}} dt$ (c) $F(x) = \int_{0}^{2} e^{t^{2}} dt$ (d) $F(x) = \int_{4}^{x^{2}} e^{t} dt$ 4. (8 points) Find the area of the region bounded by the curves

$$y = \frac{8}{x^2}$$
, $y = 8x$, and $y = x$.

5. (6 points) Compute the volume of the solid pictured below. Its bottom side is bounded in the *xy*-plane by the ellipse:

$$x^2/4 + y^2 = 1.$$

All vertical slices through this solid that are perpendicular to the *x*-axis at *x*-values in the interval -2 < x < 2 are half-disks.

6. (6 points) Sketch a picture of the region *R* entirely enclosed by the curve $x = 1 - y^2$ and the *y*-axis. SET UP (but DO NOT COMPUTE) an integral equal to the volume of the solid of revolution obtained by rotating this region *R* around the **horizontal axis of rotation** y = 1. 7. (8 points) A car drives along a straight road, from a point A to a point B, which is 3000 ft away from point A.

The car starts at rest at point A, accelerates uniformly to its maximum speed of 100 ft/sec in 20 seconds, then drives at maximum speed for a while, before finally braking at a constant deceleration of 20 ft/sec² and coming to a complete stop at point B.

How long does it take the car to complete this trip, from A to B?