Your Name (please PRINT clearly)
\square

Student ID \#

PLEASE READ DIRECTIONS BELOW:

- Do not open the test until instructed to do so.
- The exam pages are double-sided. Once the exam starts, check that you have a complete exam: there should be 7 questions on 3 double-sided pages.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ page of handwritten notes. Do not share notes.
- Only a Ti-30x IIS calculator is allowed.

Turn off your cell phone and put it away until the exam is over.

- In order to receive credit, you MUST SHOW YOUR WORK. If we cannot tell how you are getting your answers, you may receive little or no credit, even if the answer happens to be correct.
- Simplify your answers as much as possible but leave them in exact form (e.g. $\pi \sqrt{2}+\frac{1}{2}$). Do not give decimal approximations, except when otherwise instructed.
- Do not write too close to the edge of pages.

Place a box around YOUR FINAL ANSWER to each question.

- Raise your hand if you have a question.
- Read each question carefully, before and after answering it. Do your best, and show your work. Good luck!

Problem	Points	Score
1	12	
2	6	
3	4	
4	8	
5	6	
6	6	
7	8	
Total	50	

1. (12 points) Evaluate the following integrals. Show all steps. Simplify and box your answer.
(a) $\int \frac{10 x^{2}}{\sqrt{2-x^{3}}}+\frac{3}{\sqrt{1-x^{2}}} d x$
(b) $\int_{-\pi / 3}^{\pi}|\sin (x)| d x$
2. (6 points) A car travels along a straight road. The following table contains sample points of the velocity of the car, sampled every 10 minutes over the first hour of driving.

$\mathrm{t}(\mathrm{hrs})$.	$\mathrm{v}(\mathrm{t})(\mathrm{mph})$
0	20
$1 / 6$	40
$2 / 6$	-20
$3 / 6$	-40
$4 / 6$	-30
$5 / 6$	10
1	60

Use the right endpoints to estimate:
(a) the total distance driven in the first hour:
(b) the displacement of the car after the first hour:
3. (4 points) Which of the functions labeled $F(x)$ in (a)-(d) below satisfy both conditions:

$$
F^{\prime}(x)=e^{x^{2}} \text { and } F(2)=0 ?
$$

For each, state Yes or No. If "No" indicate which of the conditions fail.
(a) $F(x)=\int_{0}^{x} e^{t^{2}} d t$
(b) $F(x)=\int_{2}^{x} e^{t^{2}} d t$
(c) $F(x)=\int_{0}^{2} e^{t^{2}} d t$
(d) $F(x)=\int_{4}^{x^{2}} e^{t} d t$
4. (8 points) Find the area of the region bounded by the curves

$$
y=\frac{8}{x^{2}}, y=8 x, \text { and } y=x .
$$

5. (6 points) Compute the volume of the solid pictured below. Its bottom side is bounded in the $x y$-plane by the ellipse:

$$
x^{2} / 4+y^{2}=1
$$

All vertical slices through this solid that are perpendicular to the x-axis at x-values in the interval $-2<x<2$ are half-disks.

6. (6 points) Sketch a picture of the region R entirely enclosed by the curve $x=1-y^{2}$ and the y-axis. SET UP (but DO NOT COMPUTE) an integral equal to the volume of the solid of revolution obtained by rotating this region R around the horizontal axis of rotation $y=1$.
7. (8 points) A car drives along a straight road, from a point A to a point B, which is 3000 ft away from point A.

The car starts at rest at point A, accelerates uniformly to its maximum speed of $100 \mathrm{ft} / \mathrm{sec}$ in 20 seconds, then drives at maximum speed for a while, before finally braking at a constant deceleration of $20 \mathrm{ft} / \mathrm{sec}^{2}$ and coming to a complete stop at point B.
How long does it take the car to complete this trip, from A to B?

