Math 125C	First Midterm	Autumn 2003
Your Name	Your Signature	
Student ID #		
		Christine Katie
	Section (Tues.)	12:30 $12:30$ $1:30$

(circle one)

СВ

CA

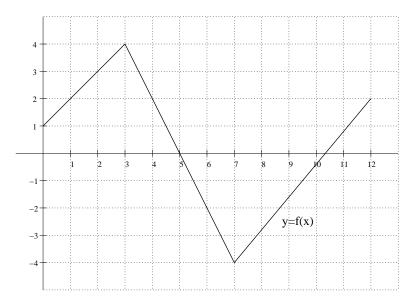
CC

Problem	Total Points	Score
1	12	
2	6	
3	8	
4	12	
5	12	
Total	50	

- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you use a trial and error (or guess and check) method when an algebraic method is available, you will not receive full credit.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (12 points) Compute the following integrals. Give your answers in exact form.

(a) (4 points)
$$\int_{1}^{\sqrt{3}} \frac{5}{1+y^2} dy$$

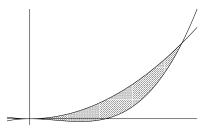

(b) (4 points) $\int_0^{\pi/4} \sec^2(\theta) \cos(\tan(\theta)) d\theta$

(c) (4 points)
$$\int \frac{3x^2}{\sqrt{2-x}} dx$$

 $\boxed{2}$ (6 points) Compute the integral $\int_{-1}^{3} |4t - t^3| dt$.

3 (8 points) Let $f(x) = \int_{x^2}^9 \cos(\pi \sqrt{t}) dt$. Compute the equation of the tangent line to y = f(x) at the point where x = 3.

- 4 (12 points) The graph of the function y = f(x) is shown to the right. It consists of line segments, and all the corners are at points with integer coefficients. Let $g(x) = \int_0^x f(v) dv$.
 - (a) (4 points) Compute f(4) and f(8).


(b) (4 points) Compute g(5) and g(9).

(c) (4 points) Compute the maximum value of g(x) on the interval [0, 12]

[5] (12 points) Let R be the region in the first quadrant bounded by $y = x^2$ and $y = x^3 - x^2$. Set up the following integrals.

DO NOT EVALUATE.

(a) (6 points) Set up an integral that computes the volume of the solid generated by rotating R around the line y=4 using the method of washers.

(b) (6 points) Set up an integral that computes the volume of the solid generated by rotating R around the y-axis using the method of shells.