1.(a) $\int_{1}^{\sqrt{3}} \frac{5}{1+y^{2}} d y=\left.5 \tan ^{-1} y\right|_{1} ^{\sqrt{3}}=5 \pi / 3-5 \pi / 4=5 \pi / 12$
(b) Let $u=\tan \theta$ so $d u=\sec ^{2} \theta d \theta$. Then $\int_{0}^{\pi / 4} \sec ^{2} \theta \cos (\tan \theta) d \theta=\int_{0}^{1} \cos u d u=\left.\sin u\right|_{0} ^{1}=\sin (1)$
(c) Let $v=2-x$ so that $d v=-d x$ and $3 x^{2}=3(2-v)^{2}=12-12 v+3 v^{2}$. Then

$$
\begin{aligned}
\int \frac{3 x^{2}}{\sqrt{2-x}} d x & =-\int \frac{12-12 v+3 v^{2}}{\sqrt{v}} d v \\
& =\int-12 v^{-1 / 2}+12 v^{1 / 2}-3 v^{3 / 2} d v \\
& =-24 v^{1 / 2}+8 v^{3 / 2}-6 / 5 v^{5 / 2}+C \\
& =-24 \sqrt{2-x}+8(2-x)^{3 / 2}-6 / 5(2-x)^{5 / 2}+C
\end{aligned}
$$

2. Note that $4 t-t^{3} \geq 0$ when $0 \leq t \leq 2$, and that it is negative on the rest of the interval. Thus

$$
\begin{aligned}
\int_{-1}^{3}\left|4 t-t^{3}\right| d t & =-\int_{-1}^{0} 4 t-t^{3} d t+\int_{0}^{2} 4 t-t^{3} d t-\int_{2}^{3} 4 t-t^{3} d t \\
& =-\left(2 t^{2}-1 /\left.4 t^{4}\right|_{-1} ^{0}\right)+\left(2 t^{2}-1 /\left.4 t^{4}\right|_{0} ^{2}\right)-\left(2 t^{2}-1 /\left.4 t^{4}\right|_{2} ^{3}\right) \\
& =7 / 4+4+25 / 4=12
\end{aligned}
$$

3. Write $f(x)=-\int_{9}^{x^{2}} \cos (\pi \sqrt{t}) d t$. By the Fundamental Theorem of Calculus, $f^{\prime}(x)=-2 x \cos \left(\pi \sqrt{x^{2}}\right)$. Now $f(3)=-\int_{9}^{9} \cos (\pi \sqrt{t}) d t=0$ and $f^{\prime}(3)=-6 \cos (3 \pi)=6$. Thus the line is $y-0=6(x-3)$.
4. The equations of the lines are $y=x+1, y=-2(x-5)$, and $y+4=\frac{6}{5}(x-7)$.
(a) $f(4)=-2(4-5)=2 \quad f(8)=\frac{6}{5}(8-7)-4=-14 / 5$
(b) To compute $g(5)$, divide the area at $x=3$. The left part is a trapeziod with base $b=3$ and heights $h_{1}=1, h_{2}=4$. The area of this part is $\frac{1}{2} b\left(h_{1}+h_{2}\right)=15 / 2$. The right part is a triangle with base $b=2$ and height $h=4$. The area of this part is $\frac{1}{2} b h=4$. Thus $g(5)=15 / 2+4=23 / 2$.
To compute $g(9)$, note that it is $g(5)$ minus the area under the x-axis from $x=5$ to $x=9$. Split this area at $x=7$ to get a triangle of area 4 and a trapezoid with base $b=2$ and heights $h_{1}=4, h_{2}=|f(9)|=8 / 5$. Thus the area under the x-axis is $4+\frac{1}{2}(2)\left(4+\frac{8}{5}\right)=48 / 5$ and $g(9)=23 / 2-48 / 5=19 / 10$.
(c) Since $g^{\prime}(x)=f(x)$ the function $y=g(x)$ has only one relative maximum, at $x=5$. Thus the max must occur at $x=5$ or at one of the endpoints $x=0$ and $x=12$. But $g(0)=0, g(5)=23 / 2$ and we can compute that $g(12)=5 / 2$. Thus the max is $g(5)=23 / 2$.
5. For both parts you need to solve $x^{2}=x^{3}-x^{2}$. This gives $0=x^{3}-2 x^{2}=x^{2}(x-2)$ so the limits of integration in both problems are $x=0$ to 2 .
(a) $\pi \int_{0}^{2}\left(4-x^{3}+x^{2}\right)^{2}-\left(4-x^{2}\right)^{2} d x$
(b) $2 \pi \int_{0}^{2} x\left(2 x^{2}-x^{3}\right) d x$
