Your Name

Your Signature
\square

Student ID \#

TA's Name and quiz section (circle):

Cady
BA CB

Cruz
BB BC

Jacobs
CA CC

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8 \frac{1}{2}$ " $\times 11$ " sheet of handwritten notes (one side).
- Graphing calculators are not allowed.
- Give your answers in exact form, not decimals.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Check your work carefully. We will award only limited partial credit.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 5 pages, plus this cover sheet. Make sure that your exam is complete.

Question	Points	Score
1	14	
2	11	
3	7	
4	10	
5	8	
Total	50	

1. (a) (7 points) Compute $\int\left(3 x^{4}-\frac{1}{x}+5 \cos (x)\right) d x$.
(b) (7 points) Compute $\int \sec ^{2}(2 x) \tan ^{5}(2 x) d x$.
2. (a) (4 points) Compute $\int_{-1}^{1} \sqrt{1-x^{2}} d x$. [Hint: interpret the integral as an area.]
(b) (7 points) Compute $\int_{1}^{2} x(2-x)^{7} d x$.
3. (7 points) Find the interval (or intervals) on which the curve

$$
y=\int_{2}^{x^{2}-x}\left(1+\sin ^{2}(t)\right) d t
$$

is increasing.
4. A spaceship is at rest in space. At time $t=0$, the pilot turns the engine on, and then turns it off when $t=4$. As a result, the spaceship's acceleration is given by

$$
a(t)= \begin{cases}10, & \text { if } 0 \leq t \leq 4, \\ 0, & \text { if } t>4\end{cases}
$$

(a) (5 points) What is the spaceship's velocity when $t=2$? When $t=4$? When $t=10$?
(b) (3 points) Find a formula for $v(t)$, the velocity of the spaceship, valid for all $t \geq 0$.
(c) (2 points) How far has the spaceship traveled after 10 seconds?
5. (8 points) Consider the region bounded by the curve $y=1 / x$, the line $x=1$, and the line $y=c$ for some constant $c>1$. Rotate this region about the y-axis. For what value of c is the volume of the resulting solid equal to 2π ?

