Your Name

Student ID \#

Professor's Name

Your Signature
\square
Quiz Section

TA's Name
\square

PLEASE READ the DIRECTIONS below:

- Do not open the test until instructed to do so. This test has 5 problems on 4 pages. Once the test starts, please check that you have a complete exam.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ page of handwritten notes. Do not share notes.
- Only a Ti-30x IIS calculator is allowed. Silence your cell phone and put it away.
- In order to receive credit, you MUST SHOW YOUR WORK. If we cannot tell how you are getting your answers, you may receive little or no credit, even if the answer happens to be correct.
- Simplify your answers as much as possible but leave them in exact form (e.g. $\pi \sqrt{2}+\frac{1}{2}$). Do not give decimal approximations, unless otherwise instructed.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Read each question carefully, before and after answering it. Do your best, and show your work.
- Take a deep breath. You've got this. Good luck!

Problem	Total Points	Score
1	14	
2	7	
3	7	
4	8	
5	14	
Total	50	

1. [14 points] Evaluate the following integrals. Show all steps. Simplify and box your answer.
(a) $\left[4\right.$ points] $\int \frac{3 x-2}{\sqrt{x}} d x$
(b) [5 points] $\int \sqrt{x} \sin \left(1+x^{\frac{3}{2}}\right) d x$
(c) [5 points] $\int_{1}^{2} \frac{5}{2-3 x} d x$
2. [7 points]

A particle is moving along a straight line. At all times $t \geq 0$ the velocity of the particle is given by

$$
v(t)=3 t^{2}-12
$$

Let b be an arbitrary number greater than 10 . Find the total distance traveled by the particle from time $t=0$ to time $t=b$. Your answer should be an expression involving b. Show all work.

3. [7 points]

(a) You are given that $g(x)$ is a continuous function on $[0,3]$ such that

$$
\int_{0}^{3} g(x) d x=-1 \text { and } \int_{2}^{3} g(x) d x=-3
$$

Compute $\int_{0}^{2} 5 g(x)+7 d x$. Show all steps.
(b) Sue and Kathy race each other, running with continuous positive velocities $v_{S}(t)$ and $v_{K}(t)$, respectively. They start the race at the starting line at $t=0$ seconds. Kathy runs faster than Sue throughout the race. Write a definite integral that would equal the area between their velocity curves over the first 10 seconds of the race, and a brief English sentence giving the physical interpretation of what that area and integral represent.
4. [8 points] Compute each of the following expressions. Justify your answer.
(a) $\frac{d}{d x} \int_{0}^{3 x} \sin \left(t^{2}\right) d t$
(b) $\int_{0}^{3} \frac{d}{d x}\left(\sin \left(x^{2}\right)\right) d x$
(c) $\frac{d}{d x} \int_{0}^{3} \sin \left(t^{2}\right) d t$
5. [14 points] Let \mathcal{R} denote the region bounded by the graphs of $x=y^{2}, x=e^{y}, y=0$, and $y=1$.
(a) [6 points] Compute the area of this region \mathcal{R}. Show your work.

(b) [8 points] SET UP (but DO NOT EVALUATE) definite integrals equal to the volumes of the solids of revolution obtained by rotating the same region \mathcal{R} about:
(i) about the y-axis.

(ii) about the horizontal line $y=-1$.

