Your Name

Student ID \#

Your Signature
\square
Quiz Section

PLEASE READ the DIRECTIONS below:

- Do not open the test until instructed to do so. This test has 4 problems on 4 pages. Once the test starts, please check that you have a complete exam.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ page of handwritten notes. Do not share notes.
- Only a Ti-30X IIS calculator is allowed. Silence your cell phone and put it away.
- In order to receive credit, you MUST SHOW YOUR WORK. If we cannot tell how you are getting your answers, you may receive little or no credit, even if the answer happens to be correct.
- Simplify your answers as much as possible but leave them in exact form (e.g. $\pi \sqrt{2}+\frac{1}{2}$). Do not give decimal approximations, unless otherwise instructed.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Read each question carefully, before and after answering it. Do your best, and show your work.
- Good luck!

Problem	Points	Score
1	15	
2	10	
3	10	
4	15	
Total	50	

1. (15 points) Evaluate the following integrals. Show all steps. Simplify and box your answers.
(a) $\int \frac{x^{3}+\sqrt{x}}{x}-\frac{2}{\sqrt{1-x^{2}}} d x$
(b) $\int \sin (t) \cos ^{3}(t)+2 t d t$
(c) $\int_{0}^{\ln (2)} \frac{e^{x}}{1-2 e^{x}} d x$
2. (10 points) On planet Zorg, the acceleration due to gravity is $8 \mathrm{~m} / \mathrm{s}^{2}$. A Zorgian student throws an orange TI 30X calculator, with some initial velocity v_{0}, from a cliff 50 meters above the ground. The calculator hits the ground 5 seconds after it was thrown, smashing into pieces.
(a) (4 points) Compute the initial velocity v_{0}, and specify if the calculator was thrown up or down.
(b) (6 points) Compute the total distance traveled by the ill-fated calculator in the first $\mathbf{3}$ seconds after it was thrown.
3. (10 points) Answer the following three (unrelated) questions:
(a) (4 points) Compute the following limit of a Riemann Sum by first writing it as a definite integral, and then evaluating the integral.
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{3}{n} \sqrt{4-\frac{3 i}{n}}\right)$
(b) (4 points) Let $g(x)=\int_{0}^{2 x} \cos \left(\pi t^{2}\right) d t$. Compute $g^{\prime}(1 / 2)$.
(c) (2 points) The graph of a function f is shown below. Which of the graphs a-c is an antiderivative of f ? No need to justify.

4. (15 points) Consider the region R enclosed by the curve $y=x^{3}$, the horizontal line $y=8$, and the y-axis.
(a) (7 points) Find the value of the constant b such that the horizontal line $y=b$ divides the region R into two regions of equal area.
(b) (8 points) A solid is obtained by rotating the above region R around the horizontal line $y=8$. SET UP integrals equal to the volume of this solid using BOTH the method of disks/washers and the method of cylindrical shells (DO NOT EVALUATE the integrals.)

Disks/Washers:

Shells:

