Problem 1.

This problem involves a car that moves in a straight line on a racing track. Let t denote the time (measured in seconds) after the start of a race. Suppose that the acceleration (measured in $\mathrm{m} / \mathrm{sec}^{2}$ of the car at time t is given by the formula

$$
a(t)=10 e^{-t / 2}
$$

(a) (5 points) Find a formula for $v(t)$, the velocity of the car (in $\mathrm{m} / \mathrm{sec}$) at time t, if $v(0)=5 \mathrm{~m} / \mathrm{sec}$.
(b) (5 points) Assume as in part (a) that $v(0)=5 \mathrm{~m} / \mathrm{sec}$, and let $s(t)$ be the position of the car (measured in meters) t seconds after the start of the race. Assume that $s(0)=0$ meter. Where is the car after 10 seconds? (Give a numerical answer.)
Solution to (a): Since $a(t)=v^{\prime}(t)$, it follows that $v(t)=\int a(t) d t$. Hence,

$$
v(t)=\int 10 e^{-t / 2} d t=-20 e^{-t / 2}+C
$$

Since $v=5$ when $t=0$, we have $v(0)=-20+C=5(\mathrm{~m} / \mathrm{sec})$. Hence, $C=25$. Therefore, $v(t)=25-20 e^{-t / 2}$
Solution to (b): From part (a) we can write $\frac{d s}{d t}=25-20 e^{-t / 2}$.
Therefore, $s(t)=\int 25-20 e^{-t / 2} d t=25 t+40 e^{-t / 2}+C$
Since $s(0)=40+C=0$, we find that $C=-40$.
Therefore, at $t=60$ seconds (one minute), the position of the car is

$$
s(60)=25 \cdot 60+40 e^{-60 / 2}-40 \approx 1460 \text { meters }
$$

Problem 2. The graph of the function f is shown below. Let g be the function defined by the formula $g(x)=\int_{0}^{x} f(t) d t$. (a) What is the value of $g(5)$? (b) What is the value of $g^{\prime}(5)$?
(c) What is the value of $g^{\prime \prime}(1)$?

Solution:(a) $g(5)$ is the signed area region between the curve $y=f(x)$ and the $\overline{x \text {-axis, }}$ between $x=0$ and $x=$ 5. This is the area of a triangle of base 2 and height 3 minus the area of a triangle of base 3 and height 1 , so $g(4)=\frac{1}{2} \times 2 \times 3-\frac{1}{2} \times 3 \times 1=\frac{3}{2}$.
(b) By the Fundamental Theorem of Calculus, $g^{\prime}(5)=f(5)=0$.

(c): $g^{\prime \prime}(1)=f^{\prime}(1)=$ slope of line in the figure on the interval $[0,2]$. So $g^{\prime \prime}(1)=\frac{0-3}{2-0}=-\frac{3}{2}$.

Problem 3.
(a) Evaluate the indefinite integral $\int\left(e^{3 x}+1\right)^{5} e^{3 x} d x$.

Solution: (a) Let $u=e^{3 t}+1$, then $d u=3 e^{3 t} d t$.
Consequently, $\int\left(e^{3 t}+1\right)^{5} e^{3 t} d t=\frac{1}{3} \int u^{5} d u \frac{1}{18} u^{6}+C=\frac{1}{18}\left(e^{3 t}+1\right)^{6}+C$.
(b) Evaluate the definite integral $\int_{2}^{3} \frac{(x-2)}{(x-2)^{4}+1} d x$.

Solution: Let $u=(x-2)^{2}$. Then $d u=2(x-2) d x$.
Hence, $\int_{2}^{3} \frac{(x-2)}{(x-2)^{4}+1} d x=\frac{1}{2} \int_{0}^{1} \frac{d u}{u^{2}+1}=\left.\frac{1}{2} \tan ^{-1}(u)\right|_{0} ^{1}$
$=\frac{1}{2}\left(\tan ^{-1}(1)-\tan ^{-1}(0)\right)=\pi / 8$.

Problem 4.

Find the area of the shaded region bounded by the curves $y=x$ and $x=y+2 \cos (\pi y / 4)$, as shown in the figure below.

Solution: Notice that when the two curves intersect $\cos (\pi y / 4)=0$. So the curves intersect when $y=-2$ and $y=+2$. The area of the shaded region is therefore:

$\left.\int_{-2}^{+2}\{y+2 \cos (\pi y / 4))-y\right\} d y=2 \int_{-2}^{+2} \cos (\pi y / 4) d y=\left.\frac{8}{\pi} \sin (\pi y / 4)\right|_{-2} ^{+2}=16 / \pi$.

Problem 5.

The region pictured below is revolved about the y-axis to form a solid.
(a) Express the volume of the solid as a definite integral. (Your answer will involve the function $f(x)$.)

Solution: Volume $=2 \pi \int_{1}^{5} x f(x) d x$
(b) Using the table of values of $f(x)$ below, approximate the volume of the solid by approximating the integral in part (a) using a midpoint sum (M_{n})
with $n=4$.

$x:$	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
$f(x):$	24.0	29.0	32.0	33.0	32.0	29.0	24.0	17.0
18.0								

Solution: Since $n=4, \Delta x=\frac{(5-1)}{4}=1$, and $x_{0}=1, x_{1}=2, x_{2}=3, x_{3}=4, x_{4}=5$.
Therefore $\bar{x}_{1}=1.5, \bar{x}_{2}=2.5, \bar{x}_{3}=3.5, \bar{x}_{4}=4.5$.
Consequently Volume $\approx M_{4}=\sum_{j=1}^{4} 2 \pi \bar{x}_{j} f\left(\bar{x}_{j}\right) \Delta x$
$=2 \pi(1.5 \times 29+2.5 \times 33+3.5 \times 29+4.5 \times 17) \times 1.0=2 \pi \times 304 \approx 1919.09$

