Math 125 F - Winter 2016 Midterm Exam Number One January 28, 2016

Name: _____

Student ID no. : _____

Signature: _____

Section: _____

1	12	
2	12	
3	10	
4	5	
5	12	
6	9	
Total	60	

- This exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you run out of room, write on the back of the page, but *indicate that you have done so*!
- You may use one hand-written double-sided 8.5" by 11" page of notes.
- You may use a *scientific calculator*. Calculators with graphing, differentiation, integration, or algebraic capabilities are not allowed.
- You have 80 minutes to complete the exam.

1. [4 points per part] Compute the indefinite integrals.

(a)
$$\int \left(\sqrt[7]{x} - \frac{2}{\sqrt{1-x^2}}\right) dx$$

(b)
$$\int (x^{1.7} + e^{3x}) dx$$

(c)
$$\int \frac{\sin^2(\ln(x))\cos(\ln(x))}{x} \, dx$$

2. **[12 points]** Compute the area of the region bounded by the following three curves:

$$y = 1$$
 $y = 2\sqrt{x}$ $y = \frac{54}{x}$

3. **[10 points]** A remote-controlled tomato is moving along the number line. Its velocity after *t* seconds is given by the formula

$$v(t) = 9 - 3^t.$$

Compute the total distance traveled by the tomato from time t = 0 to t = 4.

(You do not need to simplify your answer.)

4. **[5 points]** Write (but do not simplify) a formula for the L_{1000} approximation of $\int_0^2 \sin(x) dx$. (*Please* use Σ -notation. Do not write out a thousand summands.)

- 5. **[12 points]** Let \mathcal{R} be the region in the *x*-*y* plane below $y = \sec(x) \tan(x)$ and above y = -2 from x = 0 to $x = \frac{\pi}{4}$.
 - (a) Write an integral to compute the volume of the solid formed by revolving \mathcal{R} around the line y = -2.

(b) Evaluate the integral from part (a).

6. Below is the graph of f(x), the most beautiful function you've ever seen.

Use this graph to answer the following questions.

(a) **[3 points]** Does $\int_{-4}^{-1} f(x) dx$ exist? Explain, briefly.

(b) [3 points] Evaluate
$$\lim_{n \to \infty} \sum_{i=1}^{n} f\left(2 + \frac{5i}{n}\right) \frac{5}{n}$$
.

(c) [3 points] Let
$$h(x) = \int_0^{2x} f(3t) dt$$
. Compute $h'(1)$.