Math 125 F - Winter 2016 Midterm Exam Number One January 28, 2016

Name: \qquad Student ID no. : \qquad
\qquad Section: \qquad

1	12	
2	12	
3	10	
4	5	
5	12	
6	9	
Total	60	

- This exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you run out of room, write on the back of the page, but indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You may use a scientific calculator. Calculators with graphing, differentiation, integration, or algebraic capabilities are not allowed.
- You have 80 minutes to complete the exam.

1. [4 points per part] Compute the indefinite integrals.
(a) $\int\left(\sqrt[7]{x}-\frac{2}{\sqrt{1-x^{2}}}\right) d x$
(b) $\int\left(x^{1.7}+e^{3 x}\right) d x$
(c) $\int \frac{\sin ^{2}(\ln (x)) \cos (\ln (x))}{x} d x$
2. [12 points] Compute the area of the region bounded by the following three curves:

$$
y=1 \quad y=2 \sqrt{x} \quad y=\frac{54}{x}
$$

3. [10 points] A remote-controlled tomato is moving along the number line. Its velocity after t seconds is given by the formula

$$
v(t)=9-3^{t}
$$

Compute the total distance traveled by the tomato from time $t=0$ to $t=4$.
(You do not need to simplify your answer.)
4. [5 points] Write (but do not simplify) a formula for the L_{1000} approximation of $\int_{0}^{2} \sin (x) d x$. (Please use Σ-notation. Do not write out a thousand summands.)
5. [12 points] Let \mathcal{R} be the region in the $x-y$ plane below $y=\sec (x) \tan (x)$ and above $y=-2$ from $x=0$ to $x=\frac{\pi}{4}$.
(a) Write an integral to compute the volume of the solid formed by revolving \mathcal{R} around the line $y=-2$.
(b) Evaluate the integral from part (a).
6. Below is the graph of $f(x)$, the most beautiful function you've ever seen.

Use this graph to answer the following questions.
(a) [3 points] Does $\int_{-4}^{-1} f(x) d x$ exist? Explain, briefly.
(b) [3 points] Evaluate $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(2+\frac{5 i}{n}\right) \frac{5}{n}$.
(c) [3 points] Let $h(x)=\int_{0}^{2 x} f(3 t) d t$. Compute $h^{\prime}(1)$.

