Math 125 F - Winter 2016 Midterm Exam Number One January 28, 2016

Name: \qquad Student ID no. : \qquad
\qquad Section: \qquad

1	12	
2	12	
3	10	
4	5	
5	12	
6	9	
Total	60	

- This exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you run out of room, write on the back of the page, but indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You may use a scientific calculator. Calculators with graphing, differentiation, integration, or algebraic capabilities are not allowed.
- You have 80 minutes to complete the exam.

1. [4 points per part] Compute the indefinite integrals.

$$
=\frac{7 x^{8 / 7}}{8}-2 \arcsin (x)+C
$$

(b) $\int\left(x^{1.7}+e^{3 x}\right) d x$

$$
\begin{aligned}
& \int\left(x^{1.7}+e^{3 x}\right) d x \\
& \frac{x^{2.7}}{2.7}+\frac{1}{3} \int 3 e^{3 x} d x=\frac{x^{2.7}}{2.7}+\frac{1}{3} \int e^{u} d u=3 x \\
& n=3.7 \\
& \hline
\end{aligned}
$$

$$
d u=3 d x
$$

(c) $\int \frac{\sin ^{2}(\ln (x)) \cos (\ln (x))}{x} d x=\int u^{2} d u$

$$
u=\sin (\ln (x)) \quad=\frac{u^{3}}{3}+C=\frac{\sin ^{3}(\ln (x))}{3}+C
$$

$$
d u=\cos (\ln (x)) \cdot \frac{1}{x} d x
$$

2. [12 points] Compute the area of the region bounded by the following three curves:

3. [10 points] A remote-controlled tomato is moving along the number line. Its velocity after t seconds is given by the formula

$$
v(t)=9-3^{t} .
$$

Compute the total distance traveled by the tomato from time $t=0$ to $t=4$.
(You do not need to simplify your answer.)
$\begin{array}{cc}\text { When does it turn around? } & v(t)=9-3^{t}=0 \\ & \downarrow \\ \text { Displacement after } t \text { seconds: } & t=2\end{array}$

$$
\begin{aligned}
s(t) & =\int_{0}^{t} 9-3^{x} d x \\
& \left.=\left(9 x-\frac{3^{x}}{\ln (3)}\right)\right]_{0}^{t} \\
& =9 t-\frac{3^{t}-1}{\ln (3)}
\end{aligned}
$$

$\begin{aligned} & \text { when it turns } \\ & \text { around }\end{aligned} S(0)=0$

$又_{s}(2)=18-\frac{8}{\ln (3)}$

$$
=\frac{64}{\ln (3)}
$$

4. [5 points] Write (but do not simplify) a formula for the L_{1000} approximation of $\int_{0}^{2} \sin (x) d x$.

5. [12 points] Let \mathcal{R} be the region in the $x-y$ plane below $y=\sec (x) \tan (x)$ and above $y=-2$ from $x=0$ to $x=\frac{\pi}{4}$.
(a) Write an integral to compute the volume of the solid formed by revolving \mathcal{R} around the line $y=-2$.

$$
V=\int_{0}^{\frac{\pi}{4}} \pi(\sec (x) \tan (x)+2)^{2} d x
$$

(b) Evaluate the integral from part (a).

$$
\begin{aligned}
& =\pi\left(\left(\frac{1^{3}}{3}+4 \sqrt{2}+\pi\right)-(0+4+0)\right) \\
& =\pi\left(\frac{-11}{3}+4 \sqrt{2}+\pi\right)
\end{aligned}
$$

6. Below is the graph of $f(x)$, the most beautiful function you've ever seen.

Use this graph to answer the following questions.
(a) [3 points] Does $\int_{-4}^{-1} f(x) d x$ exist? Explain, briefly.

Yeah! It only has one (removable) discontinuity, so the Riemann sums converge.
(b) [3 points] Evaluate $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(2+\frac{5 i}{n}\right) \frac{5}{n}$.

$$
\int_{2}^{7} f(x) d x=11+\frac{9 \pi}{4}
$$

(c) [3 points] Let $h(x)=\int_{0}^{2 x} f(3 t) d t$. Compute $h^{\prime}(1)$.

$$
\begin{aligned}
& \text { Let } g(x)=\int_{0}^{x} f(3 x) d \text {. Then } g^{\prime}(x)=f(3 x) \text {. } \\
& h(x)=g^{\prime}(2 x) \text {, so } h^{\prime}(x)=g^{\prime}(2 x) \cdot 2=2 f(6 x) \\
& h^{\prime}(1)=2 f(6)=5
\end{aligned}
$$

