Math 125 F - Winter 2016 Midterm Exam Number One January 28, 2016

Name: _____

Student ID no. : _____

Signature: _____

Section: _____

1	12	
2	12	
3	10	
4	5	
5	12	
6	9	
Total	60	

- This exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you run out of room, write on the back of the page, but *indicate that you have done so*!
- You may use one hand-written double-sided 8.5" by 11" page of notes.
- You may use a *scientific calculator*. Calculators with graphing, differentiation, integration, or algebraic capabilities are not allowed.
- You have 80 minutes to complete the exam.

1. [4 points per part] Compute the indefinite integrals.

(a)
$$\int \left(\sqrt[7]{x} - \frac{2}{\sqrt{1 - x^2}} \right) dx$$
$$= \frac{\frac{7}{\sqrt{7}}}{\frac{7}{\sqrt{7}}} - 2 \operatorname{arcsin}(x) + ($$

(b)
$$\int (x^{1.7} + e^{3x}) dx$$

 $\frac{2.7}{2.7} + \frac{1}{3} \int e^{3x} dx = \frac{2.7}{2.7} + \frac{1}{3} \int e^{4x} dx$

(c)
$$\int \frac{\sin^2(\ln(x))\cos(\ln(x))}{x} dx = \int u^2 du$$
$$(u^2 + \sin^2(\ln(x))) = \frac{u^3}{3} + \zeta = \left[\frac{\sin^3(\ln(x))}{3} + \zeta\right]$$
$$d_u^2 = \cos(\ln(x)) \cdot \frac{1}{X} dx$$

2. **[12 points]** Compute the area of the region bounded by the following three curves:

3. **[10 points]** A remote-controlled tomato is moving along the number line. Its velocity after *t* seconds is given by the formula

$$v(t) = 9 - 3^t.$$

Compute the total distance traveled by the tomato from time t = 0 to t = 4. (You do not need to simplify your answer.)

When does it turn around? $V(t) = 9 - 3^{t} = 0$ Displacement after t seconds' $s(t) = \int_{0}^{t} 9 - 3^{x} dx$ $= (9x - \frac{3^{x}}{\ln(3)}) \int_{0}^{t}$ $= 9t - \frac{3^{t} - 1}{\ln(3)}$ Unlean it turns s(0) = 0 $s(2) = 18 - \frac{8}{\ln(3)}$ $s(4) = 36 - \frac{80}{\ln(3)}$ $Total distance = \left(18 - \frac{8}{\ln(3)} - 0\right) + \left((18 - \frac{8}{\ln(3)}) - (36 - \frac{80}{\ln(3)})\right)$ $= \frac{64}{\ln(3)}$

4. **[5 points]** Write (but do not simplify) a formula for the L_{1000} approximation of $\int_0^2 \sin(x) dx$. (*Please* use Σ -notation. Do not write out a thousand summands.)

- 5. **[12 points]** Let \mathcal{R} be the region in the *x*-*y* plane below $y = \sec(x) \tan(x)$ and above y = -2 from x = 0 to $x = \frac{\pi}{4}$.
 - (a) Write an integral to compute the volume of the solid formed by revolving \mathcal{R} around the line y = -2.

(b) Evaluate the integral from part (a).

6. Below is the graph of f(x), the most beautiful function you've ever seen.

Use this graph to answer the following questions.

(a) [3 points] Does $\int_{-4}^{-1} f(x) dx$ exist? Explain, briefly. Weah . It only has one (removable) discontinuity, so the Riemann sums converge.

(b) [3 points] Evaluate
$$\lim_{n \to \infty} \sum_{i=1}^{n} f\left(2 + \frac{5i}{n}\right) \frac{5}{n}$$
.

$$\int_{1}^{7} f(x) dx = \left[\left| + \frac{9\pi}{4} \right| \right]$$

(c) [3 points] Let
$$h(x) = \int_{0}^{2x} f(3t) dt$$
. Compute $h'(1)$.
Let $g(x) = \int_{0}^{x} f(3t) dt$. Then $g'(x) = f(3x)$.
 $h(x) = g(2x)$, so $h'(x) = g'(2x) \cdot 2 = 2 + (6x)$
 $h'(1) = 2 + (6) = 5$