Math 125
Midterm 1 (January 30, 2020)

NAME: \qquad Section: \qquad

- Time: you have 80 minutes.
- Please show all work and justify your answers. The final answers must be "reasonably" simplified. For example, a rational number must be given in the form $\frac{a}{b}$ for some integers a and b, but it is ok to have expressions like $\ln 3$ or e^{4} in your final answer.
- You are allowed to use calculator (Model TI-30X IIS only) and one handwritten (with your own handwriting) 8.5×11 inch sheet of notes. Writing allowed on both sides.
- Have your Husky Card visible on the desk beside you.
- You may use both sides of the paper.
- Make sure you have $\mathbf{9}$ pages and $\mathbf{6}$ problems before starting the exam.

Academic integrity is expected of all students at all times. Understanding this, I declare I shall not give, use, or receive unauthorized aid.

SIGNATURE:

\qquad

Problem 1: ___ / 20
Problem 2: 20
Problem 3: ___ / 20
Problem 4: ___ / 20
Problem 5: ___ / 20
Problem 6: ___ / 20

Total: \qquad / 120

Problem 1: Evaluate the following integrals:
(a)

$$
\int_{-1}^{1}\left|x^{2}-x\right| d x
$$

(b)

$$
\int \sqrt{\sqrt{t}+1} d t
$$

Problem 2: Find the function $y=f(t)$ satisfying

$$
y^{\prime \prime}=t+\cos (t) \quad, \quad y(0)=1 \quad, \quad y^{\prime}(0)=0
$$

Problem 3: Consider the function

$$
f(x)=\int_{2}^{x^{2}} \sqrt{1+\ln \left(\frac{t}{2}\right)} d t
$$

(a) Evaluate $f^{\prime}(x)$. Remember you need to show all work and justify your answer.
(b) Compute $f(\sqrt{2})$ and $f^{\prime}(\sqrt{2})$.

Problem 4: Find the area of the region enclosed by the graphs of $f(x)=x^{2}+2$ and $g(x)=2 x+5$.

Problem 5: Evaluate the following limit:

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{i}{n}}
$$

Hint: Use the theory of Riemann sums and express the limit as a definite integral.

Problem 6: The torus (doughnut-shaped solid) in the figure is obtained by rotating the circle $(x-R)^{2}+y^{2}=r^{2}$ around the y-axis (assume $R>r$).
(a) Set up an integral for the volume of this torus.
(b) Find the volume of the torus by evaluating the integral.

(extra blank page)
(extra blank page)

