Math 125 Midterm 1 (January 30, 2020)

NAME: _____ Section: _____

• Time: you have **80 minutes**.

- Please show all work and justify your answers. The final answers must be "reasonably" simplified. For example, a rational number must be given in the form $\frac{a}{b}$ for some integers a and b, but it is ok to have expressions like $\ln 3$ or e^4 in your final answer.
- You are allowed to use calculator (Model TI-30X IIS only) and one *handwritten* (with your own handwriting) 8.5 x 11 inch sheet of notes. Writing allowed on both sides.
- Have your *Husky Card* visible on the desk beside you.
- You may use both sides of the paper.
- Make sure you have 9 pages and 6 problems before starting the exam.

Academic integrity is expected of all students at all times. Understanding this, I declare I shall not give, use, or receive unauthorized aid.

SIGNATURE: _____

Problem 1:	/ 20
Problem 2:	/ 20
Problem 3:	/ 20
Problem 4:	/ 20
Problem 5:	/ 20
Problem 6:	/ 20

Total: ____ / 120

Problem 1: Evaluate the following integrals:

(a)

(b)

$$\int_{-1}^{1} |x^2 - x| \, dx$$

$$\int \sqrt{\sqrt{t}+1} \, dt$$

Problem 2: Find the function y = f(t) satisfying

$$y'' = t + \cos(t)$$
 , $y(0) = 1$, $y'(0) = 0$.

Problem 3: Consider the function

$$f(x) = \int_{2}^{x^{2}} \sqrt{1 + \ln\left(\frac{t}{2}\right)} dt$$
.

- (a) Evaluate f'(x). Remember you need to show all work and justify your answer.
- (b) Compute $f(\sqrt{2})$ and $f'(\sqrt{2})$.

Problem 4: Find the area of the region enclosed by the graphs of $f(x) = x^2 + 2$ and g(x) = 2x + 5.

Problem 5: Evaluate the following limit:

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{i}{n}}$$

Hint: Use the theory of *Riemann sums* and express the limit as a *definite integral*.

Problem 6: The *torus* (doughnut-shaped solid) in the figure is obtained by rotating the circle $(x - R)^2 + y^2 = r^2$ around the *y*-axis (assume R > r).

- (a) Set up an integral for the volume of this torus.
- (b) Find the volume of the torus by evaluating the integral.

(extra blank page)

(extra blank page)