Math 125
Midterm 1 (January 30, 2020)

NAME: SO(U.HOM Section:

e Time: you have 75 minutes.

e Please show all work and justify your answers. The final answers must be “reasonably”
simplified. For example, a rational number must be given in the form 7 for some
integers a and b, but it is ok to have expressions like In3 or e? in your final answer.

e You are allowed to use calculator (Model TI-30X IIS only) and one handwritten (with
your own handwriting) 8.5 x 11 inch sheet of notes. Writing allowed on both sides.

e Have your Husky Card visible on the desk beside you.
¢ You may use both sides of the paper. -

¢ Make sure you have 9 pages and 6 problems before starting the exam.

Academic integrity is expected of all students at all times. Understanding this, I declare
I shall not give, use, or receive unauthorized aid.

SIGNATURE:

Problem 1: __ /20
Problem 2: /20
Problem 3: ___ /20
Problem 4: __ /20
Problem 5: ___ /20
Problem 6: ___ /20

Total: ___ /120



Problem 1: Evaluate the following integrals:
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Problem 2: Find the function y = f(¢) satisfying

Y =t+cos(t) , y0)=1 , ¢(0)=0.
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Problem 3: Consider the function
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(a) Evaluate f'(z). Remember to show all work and justify your answer.

(b) Compute f(v2) and f'(v2).
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Problem 4: Find the area of the region enclosed by the graphs of f{z) = z? + 2 and
glz) =2z + 5.
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Problem 5: Evaluate the following limit:
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Hint: Use the theory of Riemann sums and express the limit as a definite integral.

consider 00 =YX on [0,1]
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Problem 6: The torus (doughnut-shaped solid) in the figure is obtained by rotating the
circle (x — R)* + 3 = r? around the y-axis (assume R > r).

{a) Set up an integral for the volume of this torus.

(b) Find the volume of the torus by evaluating the integral.
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