MIDTERM 2 ANSWERS

Problem 1. (13 points total) Compute the following integrals. Give your answer in exact form (do not use decimals).
a. (6 points) $\int \frac{2 x-3}{x^{2}+2 x+1} d x$

Solution: partial fractions. Get $2 \ln |x+1|+5 \frac{1}{x+1}+C$.
b. (7 points) $\int_{\pi / 4}^{\pi / 3} \frac{\ln (\tan \theta)}{\sin \theta \cos \theta} d \theta$

Solution: substitution! Guess: $u=\ln (\tan \theta)$. Get $\frac{(\ln \sqrt{3})^{2}}{2}$.
Problem 2. (8 points total) Compute the following integral. Give your answer in exact form (do not use decimals).

$$
\int \frac{t^{3}}{\sqrt{t^{2}+4}} d t
$$

Solution: trig substitution. Get $\frac{\left(t^{2}+4\right)^{3 / 2}}{3}-4 \sqrt{t^{2}+4}+C$.
Problem 3. (9 points total) Find a postitive number h such that the average value of the function

$$
f(x)=x^{2}-5-2 x
$$

on the interval $[0, h]$ equals 1 .
Solution: $h=6$.
Problem 4. (9 points) Use Simpson's Rule with $n=4$ subintervals to approximate the integral

$$
\int_{3}^{5} \frac{e^{x}}{x} d x
$$

Solution: approximately 30.25
Problem 5.(11 points) Determine whether each of the following integrals is convergent or divergent. If it is convergent, evaluate it.
a. (5 points) $\int_{1}^{\infty} \frac{2 x+3}{x^{2}+3 x+1} d x$.

Solution: use substitution. Integral is divergent.
b. (6 points) $\int_{0}^{\infty} x e^{-x} d x$.

Solution: use integration by parts and L'Hospital's rule. Integral is convergent and equal to 1.

