Your Name

Your Signature
\square

Student ID \#

	Yuanlong		Chris	
Section (Thu.)	11:30	10:00	11:30	10:00
(circle one)	CA	CB	CC	CD

Problem	Total Points	Score
1	12	
2	12	
3	8	
4	8	
5	10	
Total	50	

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.

- Place a box around YOUR FINAL ANSWER to each question.

- If you use a trial and error (or guess and check) method when an algebraic method is available, you will not receive full credit.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (12 points) Compute the following indefinite integrals.
(a) (6 points) $\int \sin ^{5} \theta \cos ^{3} \theta d \theta$
(b) (6 points) $\int \frac{1}{y \sqrt{y^{2}-25}} d y$

2 (12 points) Compute the following definite integrals. Give your answers in exact form.
(a) (6 points) $\int_{3}^{5} \frac{5 x^{2}}{x^{2}-3 x+2} d x$
(b) (6 points) $\quad \int_{0}^{1} t \sin ^{-1} t d t$

3 (8 points) A rope is used to pull a bucket full of water up from a well that is 10 m deep. The rope has a total mass of 5 kg . The bucket of water has a mass of 11 kg . The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$. Set up an integral that computes the work done in lifting the bucket all the way up. Do not simplify or evaluate the integral.

4 (8 points) Use the Trapezoid Rule with $n=5$ to approximate the average value of the function $\phi(x)=\sin (1 / x)$ on the interval $x=1$ to $x=4$. Round your answer to 3 decimal places.

5 (10 points) Determine if the improper integral $\int_{-1}^{0} \frac{e^{1 / t}}{t^{3}} d t$ is convergent or divergent. If it is convergent, evaluate it.

