Math 125 F - Winter 2016 Midterm Exam Number Two February 25, 2016

Name: \qquad Student ID no. : \qquad
\qquad Section: \qquad

1	21	
2	80	
3	12	
4	$8 \rightarrow$	
5	5	
6	6	
Total	60	

- This exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you run out of room, write on the back of the page, but indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You may use a scientific calculator. Calculators with graphing, differentiation, integration, or algebraic capabilities are not allowed.
- You have 80 minutes to complete the exam.

$$
\begin{aligned}
& \text { 1. [7 points per part] Evaluate these integrals! } \\
& \begin{array}{l}
\text { (a) } \int_{0}^{4} \frac{d x}{\left(25-x^{2}\right)^{3 / 2}}=\int_{0}^{\sin ^{-1}\left(\frac{4}{5}\right)} \frac{5 \cos \theta d \theta}{\left(25-25 \sin ^{2} \theta\right)^{3 / 2}}=\int_{0}^{\left.-\frac{4}{5}\right)} \frac{5 \cos \theta d \theta}{\left(25 \cos ^{2} \theta\right)^{3 / 2}}=\int_{0}^{-1} \frac{4}{5} \frac{5 \cos \theta d \theta}{125 \cos ^{3} \theta d \theta} \\
x=5 \sin \theta \quad \theta=\sin ^{-1}\left(\frac{x}{5}\right) \\
d x=5 \cos \theta d \theta
\end{array}
\end{aligned}
$$

$\sin ^{-1}\left(\frac{4}{5}\right)$
$=\int_{0}^{25} \frac{1}{\left.2 \sec ^{2} \theta d \theta=\frac{1}{25}(\tan \theta)\right]_{0}^{\sin ^{-1}\left(\frac{4}{5}\right.}=\frac{1}{25} \tan \left(\sin \left(\frac{4}{5}\right)\right)-\frac{1}{25}\left(\frac{4}{3}\right) .}$

$$
\begin{aligned}
& \frac{5}{\sin ^{-1}\left(\frac{4}{5}\right)} \\
& 3 \\
& \left.\left.-\frac{x^{-1.5}}{-1.5}\right)\right]_{1}^{t}
\end{aligned}
$$

(b) $\int_{1}^{\infty} \frac{x+\sqrt{x}}{x^{3}} d x$

$$
\left.=\lim _{t \rightarrow \infty} \int_{1}^{t}\left(x^{-2}+x^{-2.5}\right) d x=\lim _{t \rightarrow \infty}\left(-x^{-1}-\frac{x^{-1.5}}{-1.5}\right)\right]_{1}^{t}
$$

$$
=\lim _{t \rightarrow \infty}(\underbrace{\frac{-1}{t}}_{0}) \underset{0}{-\frac{2}{3 \sqrt{t^{3}}}}+\frac{1}{1}+\frac{2}{3})=\frac{5}{3}
$$

Wait, hold up, there's one more part.

$$
\begin{aligned}
& \text { Wait, hold up, there's one more part. } \\
& \text { (c) } \int x^{2} e^{2 x} d x=x^{2} \frac{e^{2 x}}{2}-\int x e^{2 x} d x=\frac{1}{2} x^{22 x}-\frac{1}{2} x e^{2 x}+\int \frac{1}{2} e^{2 x} d x \\
& u=x^{2} \quad v=e^{2 x} / 2 \quad u=x \quad v=e^{2 x} / 2 \\
& d u=2 x d x \quad d v=e^{2 x} d x \quad=\frac{x^{2} e^{2 x}}{2}-\frac{1}{2} x e^{2 x}+\frac{e^{2 x}}{4}+C
\end{aligned}
$$

2. [8 points] Compute the average value of $f(x)=\tan ^{6}(x) \sec ^{6}(x)$ on the interval $\left[0, \frac{\pi}{4}\right]$.

$$
\begin{aligned}
& \text { Avg. valve }=\frac{1}{\frac{\pi}{4}-0} \int_{0}^{\pi / 4} \tan ^{6}(x) \sec ^{6}(x) d x=\frac{4}{\pi} \int_{0}^{\frac{\pi}{4}} \tan ^{6}(x)\left(\sec ^{2}(x)\right)^{2} \sec ^{2}(x) d x \\
& =\frac{4}{\pi} \int_{0}^{\pi / 4} \tan ^{6}(x)\left(1+\tan ^{2}(x)\right)^{2} \sec ^{2}(x) d x=\frac{4}{\pi} \int_{0}^{1} u^{6}\left(1+u^{2}\right)^{2} d u \\
& u=\tan (x) \\
& d n=\sec ^{2}(x) d x \\
& =\frac{4}{\pi} \int_{0}^{1}\left(u^{10}+2 u^{8}+u^{6}\right) d u \\
& \left.=\frac{4}{\pi}\left(\frac{u^{11}}{11}+\frac{2 u^{9}}{9}+\frac{u^{7}}{7}\right)\right]_{0}^{1} \\
& =\left\lvert\, \frac{4}{\pi}\left(\frac{1}{11}+\frac{2}{9}+\frac{1}{7}\right)\right.
\end{aligned}
$$

3. [12 points] Let \mathcal{R} be the region below the curve $y=\frac{x+4}{x^{2}+4 x+3}$ and above the x-axis between $x=0$ and $x=5$.
Compute the volume of the solid formed by revolving \mathcal{R} around the y-axis.

$$
\begin{aligned}
& \uparrow\left(\begin{array}{ll}
f(x)=\frac{x+4}{x^{2}+4 x+3} & \text { Volume }=\int_{0}^{5} 2 \pi x\left(\frac{x+4}{x^{2}+4 x+3}\right) d x
\end{array}\right. \\
& =\int_{0}^{5} \pi \frac{2 x^{2}+8 x}{x^{2}+4 x+3} d x \\
& \text { Shell method! } \\
& \text { Long division! } \\
& \begin{array}{r}
\frac{2}{x^{2}+4 x+3} \begin{array}{r}
2 x^{2}+8 x \\
-6
\end{array} x^{-\left(2 x^{2}+8 x+6\right)}
\end{array} \\
& \text { Partial fractions! } \\
& \frac{-6}{(x+3)(x+1)}=\frac{A}{x+3}+\frac{B}{x+1} \\
& -6=A(x+1)+B(x+3) \\
& \begin{array}{ll}
-6=2 B & \leftarrow x=-1 \\
-6=-2 A & x=-3
\end{array} \\
& \begin{array}{c}
\downarrow \\
A=3,
\end{array} \quad B=-3 \\
& =\pi \int_{0}^{5}\left(2+\frac{3}{x+3}-\frac{3}{x+1}\right) d x \\
& =\pi(2 x+3 \ln |x+3|-3 \ln |x+1|)]_{0}^{5} \\
& =\frac{\pi\left(10+3 \ln (8)-3 \ln (6)-3 \ln (3)+\frac{3 \ln (1)}{0}\right)}{(0)} \\
& =\pi\left(10+3 \ln \left(\frac{4}{9}\right)\right)
\end{aligned}
$$

4. [8 points] Recall Hooke's law, which says that the force required to compress or stretch a spring from its natural length by some distance is proportional to that distance.
A spring (of negligible mass) is suspended from the ceiling and has a natural length of 3.6 feet. When a 0.4 -pound tomato is attached to the end of the spring, it stretches to a length of 4.1 feet.

Compute the work required to stretch this same spring from a length of 5 feet to 6 feet. (Express your answer in foot-pounds.)

\qquad

5. [5 points] Use Simpson's rule with $n=6$ subintervals to approximate $\int_{2}^{5} \sin \left(x^{2}\right) d x$.
$\sum^{\text {Please }}$

$$
\frac{1}{6}\left(\sin \left(2^{2}\right)+4 \sin \left(2.5^{2}\right)+2 \sin \left(3^{2}\right)+4 \sin \left(3.5^{2}\right)+2 \sin \left(4^{2}\right)+4 \sin \left(4.5^{2}\right)+\sin \left(5^{2}\right)\right)
$$

6. [6 points] Determine whether $\int_{0}^{5} \frac{e^{x}+\sin ^{2}(x)}{x^{2}} d x$ converges or diverges. (You do not need to evaluate the integral.)

$$
e^{x} \geqslant 1 \text { and } \sin ^{2}(x) \geqslant 0 \quad \text { so } \frac{e^{x}+\sin ^{2}(x)}{x^{2}} \geqslant \frac{1}{x^{2}}
$$

on $[0,5]$,

$$
\Delta x=\frac{1}{2}
$$

$$
x_{2}=3
$$

$x_{5}=4.5$
$x_{6}=5$

Now, $\int_{0}^{5} \frac{1}{x^{2}}=\lim _{t \rightarrow 0^{+}} \int_{t}^{5} \frac{1}{x^{2}} d x$

So $\int_{0}^{5} \frac{1}{x^{2}} d x$ diverges,

$$
\left.=\lim _{t \rightarrow 0^{+}}\left(\frac{-1}{x}\right)\right]_{t}^{5}=\lim _{t \rightarrow 0^{+}}\left(\frac{-1}{5}+\frac{1}{t}\right)=\infty
$$

which means the bigger integral also diverges.

