## University of Washington Midterm Exam \#2 - Solutions

## Department of Mathematics

Math 125 A \& B
February 25, 2016

1. (10 points) Evaluate the following indefinite integrals.
(a) (5 points) We start with substitution $u=\pi \sqrt{t}$ so that $d u=\frac{\pi}{2 \sqrt{t}} d x$. The integral becomes

$$
\int \frac{\sin (\pi \sqrt{t})}{\sqrt{t}} d t=\frac{2}{\pi} \int \sin (u) d u=-\frac{2}{\pi} \cos (u)+C=-\frac{2}{\pi} \cos (\pi \sqrt{t})+C \text {. }
$$

(b) (5 points) The substitution $x=u^{6}$ works well since then $\sqrt{x}=u^{3}, \sqrt[3]{x}=u^{2}$ and $d x=6 u^{5} d u$. Thus

$$
\int \frac{d x}{\sqrt{x}-\sqrt[3]{x}}=\int \frac{6 u^{5}}{u^{3}-u^{2}} d u=6 \int \frac{u^{3}}{u-1} d u
$$

After doing long division we find that this is equal to

$$
6 \int\left(u^{2}+u+1+\frac{1}{u-1}\right) d u=6\left[\frac{u^{3}}{3}+\frac{u^{2}}{2}+u+\ln |u-1|\right]+C .
$$

After substituting back $u=\sqrt[6]{x}$ we get

$$
2 \sqrt{x}+3 \sqrt[3]{x}+6 \sqrt[6]{x}+6 \ln |\sqrt[6]{x}-1|+C
$$

2. (a) ( 5 points) (Note: This is Stewart 7.4 \#33. This can also be done by partial fractions.) Let $u=$ $x^{4}+4 x^{2}+3$ so that $d u=\left(4 x^{3}+8 x\right) d x=4\left(x^{3}+2 x\right) d x$. In changing the limits of integration we note that $x=0 \Longrightarrow u=3$ and $x=1 \Longrightarrow u=8$. Thus

$$
\int_{0}^{1} \frac{x^{3}+2 x}{x^{4}+4 x^{2}+3} d x=\frac{1}{4} \int_{3}^{8} \frac{1}{u} d u=\left.\frac{1}{4} \ln |u|\right|_{3} ^{8}=\frac{1}{4}(\ln 8-\ln 3)=\frac{1}{4} \ln \frac{8}{3}
$$

(b) (5 points) (Note: this can also be done by first integrating by parts.)

$$
\int_{0}^{1 / 2} \sin ^{-1}(x) d x
$$

We approach this as a trigonometric substitutution using $x=\sin \theta$ so that $d x=\cos \theta d \theta$ and $\theta=\sin ^{-1}(x)$. Thus

$$
\int \sin ^{-1}(x) d x=\int \theta \cos \theta d \theta=\theta \sin \theta-\int \sin \theta d \theta=\theta \sin \theta+\cos \theta+C=\sin ^{-1}(x) \cdot x+\sqrt{1-x^{2}}+C
$$

where we have used integration by parts to evaluate the $\theta$ integral. Therefore

$$
\int_{0}^{1 / 2} \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\left.\sqrt{1-x^{2}}\right|_{0} ^{1 / 2}=\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1
$$

3. (10 points) Let $R$ be the region that is between the curve $y=\sqrt{x} e^{-x^{2}}$ and the $x$-axis, is bounded on the left by the line $x=1$, and extends infinitely far out to the right. Let $S$ be the solid obtained by rotating $R$ around the $x$-axis.
Does $S$ have finite volume? If so, find it, and give your answer in exact form. (Note: This is Problem \#3 the Winter 2014 Final.)
Using the method of disks we see that the volume is given by the improper integral

$$
\int_{1}^{\infty} \pi\left(\sqrt{x} e^{-x^{2}}\right)^{2} d x=\int_{1}^{\infty} \pi x e^{-2 x^{2}} d x
$$

We first evaluate the indefinite integral using a substitution $u=-2 x^{2}$ and $d u=-4 x d x$ so that

$$
\int \pi\left(\sqrt{x} e^{-x^{2}}\right)^{2} d x=-\frac{\pi}{4} \int e^{u} d u=-\frac{\pi}{4} e^{u}+C=-\frac{\pi}{4} e^{-2 x^{2}}+C .
$$

Therefore

$$
\int_{1}^{\infty} \pi\left(\sqrt{x} e^{-x^{2}}\right)^{2} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \pi\left(\sqrt{x} e^{-x^{2}}\right)^{2} d x=\left.\lim _{t \rightarrow \infty}\left[-\frac{\pi}{4} e^{-2 x^{2}}\right]\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left[-\frac{\pi}{4} e^{-2 t^{2}}+\frac{\pi}{4} e^{-2}\right]=\frac{\pi}{4} e^{-2}
$$

4. ( 10 points) A $1600-\mathrm{lb}$ elevator is suspended by a $200-\mathrm{ft}$ cable that weighs $10 \mathrm{lb} / \mathrm{ft}$. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft ?
(Note: There are many correct ways to do this problem. As mentioned many times in class weight is a measurement of force so you do not need to multiply by the acceleration due to gravity.)
The work needed to raise the elevator alone is $1600 \mathrm{lb} \times 30 \mathrm{ft}=48,000 \mathrm{ft}-\mathrm{lb}$. The work needed to raise the bottom 170 ft of cable is $170 \mathrm{ft} \times 10 \mathrm{lb} / \mathrm{ft} \times 30 \mathrm{ft}=51,000 \mathrm{ft}-\mathrm{lb}$. The work need to raise the top 30 ft of cable is $\int_{0}^{30} 10 x d x=\left.5 x^{2}\right|_{0} ^{30}=5 \cdot 900=4500 \mathrm{ft}-\mathrm{lb}$. Adding these together, we see that the total work needed is $48,000+51,000+4,500=103,500 \mathrm{ft}-\mathrm{lb}$.
5. (10 points) (Note: This is problem 8 in the Autumn 2009 Final).
(a) (4 points) Use Simpson's rule with $n=4$ subintervals to approximate the integral. Give your answer in $E X A C T$ form (involving numbers like $\ln (3)$, etc.).
DO NOT GIVE A DECIMAL APPROXIMATION in this part. $\Delta x=\frac{3-1}{4}=\frac{1}{2}$ so we get

$$
\int_{1}^{3} \ln x d x \approx \frac{1}{6}(0+4 \ln (1.5)+2 \ln (2)+4 \ln (2.5)+\ln (3))
$$

(b) (4 points) Compute the integral exactly.

DO NOT GIVE A DECIMAL APPROXIMATION in this part.

$$
\int_{1}^{3} \ln x d x=\left.[x \ln x-x]\right|_{1} ^{3}=(3 \ln (3)-3)-(1 \ln (1)-1)=3 \ln (3)-2
$$

(c) (2 points) Use your calculator to evaluate your answers in part (a) and part (b) as decimals; round your answers to six decimal digits after the decimal point.

$$
\text { Simpson }=1.295322 \quad \text { Exact }=1.295837 \text {. }
$$

