Math 125
Midterm 2 (February 27, 2020)

NAME: Sf")!,ll'tllﬂn‘:s Section: _

¢ Time: you have 80 minutes.

e Please show all work and justify your answers. The final answers must be “reasonably”
simplified. For example, a rational number must be given in the form 7 for some
integers @ and b, but it is ok to have expressions like In3 or e in your final answer.

¢ You are allowed to use calculator (Model TI-30X 1IS only) and one handwritten (with
your own handwriting) 8.5 x 11 inch sheet of notes. Writing allowed on both sides.

e Have your Husky Card visible on the desk beside you.
¢ You may use both sides of the papef.

¢ Make sure you have 9 pages and 6 problems before starting the exam.

Acadernic integrity is expected of all students at all times. Understanding this, I declare
I shall not give, use, or receive unauthorized aid.

SIGNATURE: _

Problem 1. _ /20
Problem 2: /20
Problem 3: ___ /20
Problem 4: __ /20
Problem 5: ___ /20
Problem 6: ___ /20

Total: ___ /120



Problem 1: Evaluate the following integrals:
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Problem 2: Compute the integral

2?4+ 1
/ 23+ a? d
by the method of partial fractions.
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Problem 3: Deternine, with justification, the convergence or divergence of each of the following

improper integrals.
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Problem 4: Consider the funection

flo) =a".
(a) Let M be the average value of f on [0,3]. Compute M.,
(b) Find a value of ¢ in [0, 3] such that f{c) = M.

{€) The average value of a function g over [0, z] is equal to 22 for all 2. Determine g(z).
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Problem 5: Let ) L
flz)= —9:2 - 5}11:5 . v

Find the arc length of the curve y = f(x) over the interval [1,¢€].
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Problem 6: Let

fa)=e Ve, *
Find N such that My approximates the integral
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with an error of at most 1073,

Hint: Here My denotes the N™ midpoint approzimation to the integral, We have the error bound
formula:

/f Yz — M|<K(b a)3,

where K is any real number such that | f*(x)| < K for all a < z < b.
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