Area Between Curves Math 125 Name _____ Quiz Section _____ In this work sheet we'll study the problem of finding the area of a region bounded by curves. We'll first estimate an area given numerical information. The we'll use calculus to find the area of a more complicated region. ## The Lake 1 The widths, in feet, of a small lake were measured at 40 foot intervals. Estimate the area of the lake. ## Area Bounded by Three Curves 2 On the grid below sketch the graphs of y = 4, $y = x^2$ and $y = \sqrt{27x}$. (The last one is just a piece of a sideways parabola). 3 Shade the "triangular" region bounded by the graphs of the three functions that lies above the horizontal line. | 4 | Compute the x -coordinate of the left endpoint of the region. | |------------|--| | 5 | Compute the x-coordinate of the right endpoint of the region. | | 6 of tv | Note that the top of the region consists of a single curve, but the bottom of the region consists we different curves. Find the x -coordinate where these two curves meet. | | 7
regio | Sketch in a vertical line at the x -coordinate you found in the last problem. This divides the on into two smaller sub-regions. | | 8 | Compute the area of the left sub-region. | | 9 | Compute the area of the right sub-region. Add the two areas together to get the total | l area. | |------------|---|----------| 10 | | 41 . 4 . | | 10
non- | Recompute the area using the following trick. Solve for x as a function of y in on-constant functions. Find the area by integrating with respect to y . Is this easier? | tne two |