Name \qquad Quiz Section \qquad

In this worksheet we are going to practice computing some more volumes of solids of revolution. These will all be based on a curve called the "astroid". This curve is formed by rolling a small wheel around the inside of a larger one (see the picture). If the radius of the small wheel is one quarter the radius of the big one, a point P on the small wheel will trace out the four pointed curve shown on the far right. It's called the astroid
 because it looks like a star.

1 If the radius of the big wheel is taken to be one, the astroid can be shown to have the equation $x^{2 / 3}+y^{2 / 3}=1$. Use disks to compute the volume of the solid generated by rotating the part of the astroid in the first quadrant around the y-axis.

2 Use cylindrical shells to compute the volume of the solid generated by rotating the first quadrant portion of the astroid about the x-axis. (Hint: Try the substitution $u^{3}=y^{2}$, so $3 u^{2} d u=2 y d y$.) How does this compare with your answer in Problem 1? Can you explain this geometrically?

3 Use any method you wish to compute the volumes of the solids generated by rotating the first quadrant portion of the astroid about the lines $x=1$ and $y=-1$. Set up only. Do not compute the integrals.

