Your Name

\qquad
Student ID \#

Professor's Name

TA's Name
\square

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Give your answers in exact form. Do not give decimal approximations.
- Graphing calculators are not allowed. Do not share notes.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	14	
5	12	

Problem	Total Points	Score
6	10	
7	11	
8	11	
9	12	
Total	100	

1. [10 points total] Consider the three points $P=(1,1,1), Q=(2,0,3)$ and $R=(-1,3,0)$.
(a) [5 points] Give the equation of the plane containing the points P, Q and R.
(b) [$\mathbf{5}$ points] Find the coordinates of the point on the plane in part (a) that is closest to the point $(8,7,-5)$.
2. [10 points total] Find all points (x, y) on the polar curve $r=4 \sin \theta$ where the tangent line is vertical.
3. [10 points total] The position function of a particle is given by $\mathbf{r}(t)=\left\langle 3 \cos t, t^{2}-t, 3 \sin t\right\rangle$. (Here t is in seconds and x, y and z are measured in feet.) Compute the minimum speed of the particle.
4. [14 points total] Consider the function $F(x)=x e^{x-1}$.
(a) [6 points] Find the second Taylor polynomial T_{2} of $F(x)$ based at $b=1$.
(b) [2 points] Use the second Taylor polynomial T_{2} to approximate $F(0.8)$.
(c) [6 points] Use Taylor's inequality to find an upper bound for the error in your approximation above.
5. [12 points total] Let $f(x)=\ln (e+3 x)$.
(a) [6 points] Find the Taylor series of the function $f(x)$ centered at $b=0$.
(b) [6 points] Find an interval on which the series converges. Justify your answer.
6. [10 points total] Consider the helix given by $\mathbf{r}(t)=\langle\cos (t), \sin (t), 2 t\rangle$.
(a) [5 points] Find the parametric equation of tangent line to the helix at the point $(0,1, \pi)$.
(b) [5 points] Find the equation of the plane that contains the previous line and the point $(1,1,1)$.
7. [11 points total] Let $f(x, y)=\ln (y-x) \cdot \sqrt{25 e^{2}-(x-e)^{2}-(y-e)^{2}}$.
(a) [5 points] Find and sketch the domain of f.
(b) [6 points] Consider the surface $z=f(x, y)$. Find the equation of the tangent plane to the surface at the point $x_{0}=e, y_{0}=4 e$.
8. [11 points total] Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 \leq x^{2}+y^{2} \leq 4 x, y \geq 0\right\}$.
(a) [5 points] Draw a careful picture for the domain D.
(b) [6 points] Compute the area of D.
9. [12 points total] Locate and classify all critical points of the function $g(x, y)=2 x^{2}+y^{3}-6 x y$.
