MATH 126 – Autumn 2007

Final Exam Hints, Answers, and Partial Solutions

- 1. (a) ANSWER: $T_2(x) = 2 + \frac{1}{4}(x-1) \frac{1}{64}(x-1)^2$
 - (b) ANSWER: $\sqrt{3.7} = f(0.7) \approx T_2(0.7) = 1.92359375...$
 - (c) Taylor's inequality states that the error in the approximation is bounded by $\frac{M}{3!}|x-1|^3$, where M is an upper bound of |f'''(x)| on the interval [0.7, 1.3]. We can take M to be $\frac{3}{8(3.7)^{5/2}}$. Then the error is less than or equal to $\frac{3}{(3!)(8)(3.7)^{5/2}}|x-1|^3$, which is less than or equal to $\frac{3}{(3!)(8)(3.7)^{5/2}}(0.3)^3$ on the interval [0.7, 1.3].

ANSWER: error ≤ 0.000064083

2. (a) HINT: Integrate term-by-term the Taylor series for $\frac{1}{1-x}$ to obtain the Taylor series for $-\ln(1-x)$. Multiply by -1 and substitute $-3x^2$ for x to obtain the Taylor series for $f(x) = \ln(1+3x^2)$.

ANSWER:
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^{n+1}}{n+1} x^{2(n+1)}$$
 or, equivalently, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3^n}{n} x^{2n}$

- (b) ANSWER: $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$
- 3. ANSWER: -x + 7y + 5z = 30
- 4. (a) HINT: Find the parametric equations of the line ℓ through P and Q. Then S is the point (x, y, z) on ℓ such that $\vec{SR} \cdot \vec{PQ} = 0$.

ANSWER:
$$\left(-\frac{1}{3}, \frac{4}{3}, \frac{4}{3}\right)$$

- (b) ANSWER: $\sqrt{2}$
- (c) ANSWER: $\frac{3\sqrt{2}}{2}$
- 5. (a) ANSWER: $\sqrt{2}$
 - (b) ANSWER: $2\sqrt{2}\pi$
 - (c) ANSWER: $\kappa(t) = \frac{1}{\sqrt{2}}$
- 6. (a) ANSWER: One tangent line is: x = t, y = -t. The other is: x = t, y = t.
 - (b) ANSWER: By symmetry, the area enclosed by the curve is 4 times the area in the first quadrant bounded by the curve and the x-axis. This curve is traversed once from right to left as t increases from 0 to $\frac{\pi}{2}$. Using the formula from Stewart, Section 10.2 (page 662 of the 5th edition):

area enclosed by the curve =
$$4 \int_{\pi/2}^{0} -\sin^2 t \cos t \, dt = \frac{4}{3}$$
.

7. HINT: Use the fact that $\vec{a}(t) = \langle \sqrt{t}, t^2, t-1 \rangle$, $\vec{v}(0) = \vec{0}$, and $\vec{r}(0) = \langle 1, 2, 0 \rangle$ to find $\vec{r}(t)$. Then find the value of t at which the z-component of $\vec{r}(t)$ is equal to 0.

ANSWER: t = 3

8. (a) ANSWER: The level curve consists of the two lines
$$y = \pm \sqrt{\frac{2}{3}}x$$
.

(b) ANSWER:
$$z = \frac{4}{3}(x-2) - (y-1) + 3$$

(c) ANSWER:
$$f(1.9, 1.2) \approx 2.66666...$$

10. HINT:
$$f_{ave} = \frac{1}{A(R)} \iint_R f(x, y) dA$$
.

ANSWER:
$$f_{ave} = \frac{1}{3} (e^{-1} - e^{-4})$$