MATH 126 - Autumn 2007
Final Exam Hints, Answers, and Partial Solutions

1. (a) ANSWER: $T_{2}(x)=2+\frac{1}{4}(x-1)-\frac{1}{64}(x-1)^{2}$
(b) ANSWER: $\sqrt{3.7}=f(0.7) \approx T_{2}(0.7)=1.92359375 \ldots$
(c) Taylor's inequality states that the error in the approximation is bounded by $\frac{M}{3!}|x-1|^{3}$, where M is an upper bound of $\left|f^{\prime \prime \prime}(x)\right|$ on the interval $[0.7,1.3]$. We can take M to be $\frac{3}{8(3.7)^{5 / 2}}$. Then the error is less than or equal to $\frac{3}{(3!)(8)(3.7)^{5 / 2}}|x-1|^{3}$, which is less than or equal to $\frac{3}{(3!)(8)(3.7)^{5 / 2}}(0.3)^{3}$ on the interval [0.7,1.3].
ANSWER: error ≤ 0.000064083
2. (a) HINT: Integrate term-by-term the Taylor series for $\frac{1}{1-x}$ to obtain the Taylor series for $-\ln (1-x)$. Multiply by -1 and substitute $-3 x^{2}$ for x to obtain the Taylor series for $f(x)=\ln \left(1+3 x^{2}\right)$.
ANSWER: $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n+1}}{n+1} x^{2(n+1)}$ or, equivalently, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3^{n}}{n} x^{2 n}$
(b) ANSWER: $-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$
3. ANSWER: $-x+7 y+5 z=30$
4. (a) HINT: Find the parametric equations of the line ℓ through P and Q. Then S is the point (x, y, z) on ℓ such that $\overrightarrow{S R} \cdot \overrightarrow{P Q}=0$.
ANSWER: $\left(-\frac{1}{3}, \frac{4}{3}, \frac{4}{3}\right)$
(b) ANSWER: $\sqrt{2}$
(c) ANSWER: $\frac{3 \sqrt{2}}{2}$
5. (a) ANSWER: $\sqrt{2}$
(b) ANSWER: $2 \sqrt{2} \pi$
(c) ANSWER: $\kappa(t)=\frac{1}{\sqrt{2}}$
6. (a) ANSWER: One tangent line is: $x=t, y=-t$. The other is: $x=t, y=t$.
(b) ANSWER: By symmetry, the area enclosed by the curve is 4 times the area in the first quadrant bounded by the curve and the x-axis. This curve is traversed once from right to left as t increases from 0 to $\frac{\pi}{2}$. Using the formula from Stewart, Section 10.2 (page 662 of the 5 th edition):

$$
\text { area enclosed by the curve }=4 \int_{\pi / 2}^{0}-\sin ^{2} t \cos t d t=\frac{4}{3}
$$

7. HINT: Use the fact that $\vec{a}(t)=\left\langle\sqrt{t}, t^{2}, t-1\right\rangle, \vec{v}(0)=\overrightarrow{0}$, and $\vec{r}(0)=\langle 1,2,0\rangle$ to find $\vec{r}(t)$. Then find the value of t at which the z-component of $\vec{r}(t)$ is equal to 0 .
ANSWER: $t=3$
8. (a) ANSWER: The level curve consists of the two lines $y= \pm \sqrt{\frac{2}{3}} x$.
(b) ANSWER: $z=\frac{4}{3}(x-2)-(y-1)+3$
(c) ANSWER: $f(1.9,1.2) \approx 2.66666 \ldots$.
9. ANSWER: The point $(-2,3)$ is a saddle point, and the point $(2,3)$ is a local minimum.
10. HINT: $f_{\text {ave }}=\frac{1}{A(R)} \iint_{R} f(x, y) d A$.

ANSWER: $f_{\text {ave }}=\frac{1}{3}\left(e^{-1}-e^{-4}\right)$

