Your Name

Student ID \#

Professor's Name
\square

Your Signature
\square
Quiz Section

TA's Name

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of handwritten notes (both sides may be used).
- Graphing calculators are not allowed. Do not share notes.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	

Problem	Total Points	Score
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

1. Let $f(x)=e^{2 x-3}$.
(a) [5 points] Find the third-degree Taylor polynomial $T_{3}(x)$ for $f(x)$ based at $b=0$.
(b) [5 points] Give an upper bound on the difference between $T_{3}(x)$ and $f(x)$ on the interval $(-0.5,0.5)$.
2.

(a) [6 points] Find Taylor series for the function $f(x)=\ln (2+5 x)$ centered at $b=0$.
(b) [4 points] Give an interval on which your series converges and justify your answer.
3. [10 points] Consider a cube such as the one shown in the figure. Consider the line segment connecting corners A and D, and the line segment connecting corners B and C. These are diagonals of the cube.

Find the acute angle between these two diagonals.
4. [10 points] Find an equation of the plane that contains the following two intersecting lines:

$$
\begin{gathered}
x=4 t, \quad y=-1+2 t, \quad z=5-4 t \\
\quad \text { and } \\
x-1=1-y=\frac{z}{3} .
\end{gathered}
$$

5. [10 points] Find the point or points on the curve

$$
y=x^{4}
$$

at which the curvature is maximum.
6. Consider the curve given by the vector function

$$
r \vec{t})=\left\langle\sin (\pi t), \cos (\pi t), t^{2}-t\right\rangle
$$

(a) [5 points] Find an equation for the normal plane to the curve when $t=2$. (The normal plane is perpendicular to the tangent vector.)
(b) [5 points] The curve intersects the $x y$-plane at two points. Write the formula (but do not evaluate it) for the length of the curve between these two points.
7. A particle is moving so that its position at time $t>0$ is given by the vector

$$
\vec{r}(t)=\left\langle t^{2}+2, \frac{1}{t}, t\right\rangle .
$$

(a) [5 points] Find all times when the particle's velocity and acceleration vectors are orthogonal.
(b) [5 points] Find the magnitude (absolute value) of the tangential and normal components of the particle's acceleration vector at the times you found in part (a).
8. [10 points] The x-coordinate of a particle in the (x, y) plane is calculated based on the particle's polar coordinates. If the radius r is 2 cm with a possible error of 0.05 cm , and the angle θ is $\frac{\pi}{6}$ with a possible error of 0.1 , use differentials to approximate the range of possible values of the x-coordinate.
9. [10 points] Find nonnegative numbers x, y and z that minimize the quantity

$$
M=x^{2}+y^{2}+z^{2}
$$

subject to the condition

$$
x y^{2} z^{4}=1
$$

10.

(a) [5 points] Write (but do not evaluate) an iterated integral representing the volume contained inside the cylinder $x^{2}+y^{2}=4$, above the plane $z=0$, and below the plane $x-z=0$.
(b) [5 points] Evaluate the iterated integral

$$
\int_{0}^{\frac{\pi}{2}} \int_{y}^{\frac{\pi}{2}} \frac{\sin x}{x} d x d y
$$

