Your Name

Student ID \#

Professor's Name
\square

Your Signature
\square
Quiz Section

TA's Name

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of handwritten notes (both sides may be used).
- Graphing calculators are not allowed. Do not share notes.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	

Problem	Total Points	Score
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

1. [10 points] Find an approximation for the value of

$$
I=\int_{1}^{2} e^{1-x^{2}} d x
$$

by replacing the integrand $e^{1-x^{2}}$ above with its quadratic (or second Taylor polynomial) approximation based at $b=1$, and then integrating the result.
2. [10 points] Expand

$$
f(x)=\ln \left(\frac{1+x}{1-x}\right)
$$

in a Taylor series about $x=0$. You must express your answer using summation notation.
3. [10 points] Find a vector \vec{a} such that \vec{a} is orthogonal to $<1,5,2\rangle$ and has length equal to 6 .
4. [10 points] Find the line that is the intersection of the two planes

$$
3 x-y+z=6
$$

and

$$
x+y-5 z=1
$$

5. A particle is moving so that its position at time t is given by $x=t^{2}+t, y=t^{2}-t$.

(a) [4 points] Find the line which is tangent to the path of the particle at time $t=-2$.
(b) [6 points] Find the time(s) when the tangent line will pass through the point $(0,3)$.
6. Consider the surface defined by $z=f(x, y)$ where

$$
f(x, y)=x y+x+y^{2}
$$

(a) [5 points] Find the tangent plane to this surface at the point $(1,2,7)$.
(b) [5 points] Using a linear approximation, give an approximate value of $f(1.1,2.1)$.
7. [10 points] Find the value of d so that the plane

$$
2 x+y+z=d
$$

is a tangent plane to the surface

$$
z=f(x, y)=x^{2}+y^{2}
$$

8. [10 points] Evaluate

$$
I=\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} d x d y
$$

9. [10 points] The base of a pile of sand covers the region in the $x y$-plane that is bounded by the parabola $x^{2}+y=6$, the line $y=x$, and the positive x-axis. The depth of the sand above the point (x, y) in this region is x^{2}. Find the volume of the sand pile in the form of an integral. Do not evaluate the integral.
10. [10 points] The position of a particle is given by

$$
\mathbf{r}(t)=\left(t^{4}+2 t^{2}+1\right) \mathbf{i}+\left(1+4 t-t^{4}\right) \mathbf{j}
$$

Find the cosine of the angle between the position and acceleration vectors of the particle when $t=1$.

