MATH 126 - Winter 2007
Final Exam Hints, Answers, and Partial Solutions

1. (a) ANSWER: $T_{1}(x)=\frac{1}{5}+\frac{1}{25} x$
(b) HINT: Taylor's inequality states that the error is bounded by $\frac{M}{2} x^{2}$, where M is an upper bound for $\left|f^{\prime \prime}(x)\right|$. Here, $\left|f^{\prime \prime}(x)\right|=\frac{2}{|5-x|^{3}}$, which is largest on I when $x=2$. So, we can take M to be $\frac{2}{27}$.
ANSWER: error $\leq \frac{4}{27}$
(c) HINT: Show that $f^{(k)}(x)=\frac{k!}{(5-x)^{k+1}}$ and that the error is bounded by $\frac{1}{3}\left(\frac{2}{3}\right)^{n+1}$. Then solve the system $0.04<\frac{1}{3}\left(\frac{2}{3}\right)^{n+1}<0.05$ for n.
ANSWER: $n=4$
2. (a) HINT: Substitute $-2 x^{2}$ into the Taylor series for $\frac{1}{1-x}$ and $3 x$ into the Taylor series for $\cos x$ and subtract.
ANSWER: $\sum_{k=0}^{\infty}(-1)^{k}\left(2^{k}-\frac{3^{2 k}}{(2 k)!}\right) x^{2 k}$
(b) HINT: The Taylor series for $\cos x$ converges for all x, but the Taylor series for $\frac{1}{1-x}$ converges only for x such that $|x|<1$. This means that the Taylor series for $f(x)$ converges only for x such that $\left|2 x^{2}\right|<1$.
ANSWER: $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$
(c) ANSWER: $T_{4}(x)=\frac{5}{2} x^{2}+\frac{5}{8} x^{4}$
3. (b) HINT: $\iint_{R} x+\sqrt{x^{2}+y^{2}} d A=\int_{0}^{\pi / 2} \int_{4}^{5}(r \cos \theta+r) r d r d \theta$

ANSWER: $\frac{61}{3}\left(1+\frac{\pi}{2}\right)$
4. ANSWER: $x=-t, y=3-7 t, z=4+2 t$
5. ANSWER: $(0,0)$ gives a saddle point; $(1,1)$ gives a local max
6. ANSWER: $f(1.1,1.2) \approx 0.3$
7. ANSWER: $y=x-\sqrt{2}$
8. (a) HINT: Note that $\vec{T}(t)$ and $\vec{r}^{\prime}(t)$ have the same direction. So showing that $\vec{r}(t) \cdot \vec{r}^{\prime}(t)=0$ is sufficient.
(b) HINT: The vector $\vec{r}^{\prime}(0)$ is a normal vector to the normal plane at the point $(1,0,0)$. ANSWER: $y+z=0$
9. (a) ANSWER: $\vec{a}(t)=\langle 0,5,4\rangle$ and $\vec{v}(t)=\langle 1,5 t-3,4 t-2\rangle$.
(b) ANSWER: $\vec{r}(1)=\left\langle 1,-\frac{1}{2}, 0\right\rangle$
(c) ANSWER: $a_{T}=6, a_{N}=\sqrt{5}$
(d) ANSWER: $\kappa(1)=\frac{\sqrt{5}}{9}$

