MATH 126 – Winter 2007 Final Exam Hints, Answers, and Partial Solutions

- 1. (a) ANSWER: $T_1(x) = \frac{1}{5} + \frac{1}{25}x$
 - (b) HINT: Taylor's inequality states that the error is bounded by $\frac{M}{2}x^2$, where M is an upper bound for |f''(x)|. Here, $|f''(x)| = \frac{2}{|5-x|^3}$, which is largest on I when x = 2. So, we can take M to be $\frac{2}{27}$. ANSWER: error $\leq \frac{4}{27}$
 - (c) HINT: Show that $f^{(k)}(x) = \frac{k!}{(5-x)^{k+1}}$ and that the error is bounded by $\frac{1}{3}\left(\frac{2}{3}\right)^{n+1}$. Then solve the system $0.04 < \frac{1}{3}\left(\frac{2}{3}\right)^{n+1} < 0.05$ for n. ANSWER: n = 4
- 2. (a) HINT: Substitute $-2x^2$ into the Taylor series for $\frac{1}{1-x}$ and 3x into the Taylor series for $\cos x$ and subtract. ANSWER: $\sum_{k=1}^{\infty} (-1)^k \left(2^k - \frac{3^{2k}}{2^k}\right) x^{2k}$

ANSWER:
$$\sum_{k=0}^{k} (-1)^k \left(2^k - \frac{3^{2k}}{(2k)!} \right) x^{2k}$$

(b) HINT: The Taylor series for $\cos x$ converges for all x, but the Taylor series for $\frac{1}{1-x}$ converges only for x such that |x| < 1. This means that the Taylor series for f(x) converges only for x such that $|2x^2| < 1$.

ANSWER:
$$-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$$

c) ANSWER: $T_4(x) = \frac{5}{2}x^2 + \frac{5}{8}x^4$

- 3. (b) HINT: $\iint_R x + \sqrt{x^2 + y^2} \, dA = \int_0^{\pi/2} \int_4^5 (r \cos \theta + r) r \, dr \, d\theta$ ANSWER: $\frac{61}{3} \left(1 + \frac{\pi}{2}\right)$
- 4. ANSWER: x = -t, y = 3 7t, z = 4 + 2t
- 5. ANSWER: (0,0) gives a saddle point; (1,1) gives a local max
- 6. ANSWER: $f(1.1, 1.2) \approx 0.3$
- 7. ANSWER: $y = x \sqrt{2}$

(

- 8. (a) HINT: Note that $\vec{T}(t)$ and $\vec{r}'(t)$ have the same direction. So showing that $\vec{r}(t) \cdot \vec{r}'(t) = 0$ is sufficient.
 - (b) HINT: The vector $\vec{r}'(0)$ is a normal vector to the normal plane at the point (1, 0, 0). ANSWER: y + z = 0
- 9. (a) ANSWER: $\vec{a}(t) = \langle 0, 5, 4 \rangle$ and $\vec{v}(t) = \langle 1, 5t 3, 4t 2 \rangle$.
 - (b) ANSWER: $\vec{r}(1) = \langle 1, -\frac{1}{2}, 0 \rangle$
 - (c) ANSWER: $a_T = 6$, $a_N = \sqrt{5}$
 - (d) ANSWER: $\kappa(1) = \frac{\sqrt{5}}{9}$