Your Name

Your Signature
\square
Student ID \#

Professor's Name

TA's Name

- This exam contains 9 problems on 10 pages. CHECK THAT YOU HAVE A COMPLETE EXAM.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a non-graphing, scientific calculator. Do not share notes or calculators.
- Give your answers in exact form. Do not give decimal approximations.
- In order to receive credit, you must show your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	10	
3	15	
4	10	
5	10	

Problem	Total Points	Score
6	10	
7	10	
8	11	
9	12	
Total	100	

1. $\left[12\right.$ points total] Let $f(x)=e^{\cos (x)}$.
(a) [6 points] Find the second Taylor polynomial $T_{2}(x)$ for $f(x)$ based at $b=0$.
(b) [6 points] Give a bound on the error $\left|f(x)-T_{2}(x)\right|$ for x in the interval $-0.1 \leq x \leq 0.1$.
2. [10 points total] Let $f(x)=\ln \left(2+3 x^{4}\right)$.

Find the coefficient on x^{44} in the Taylor series for $f(x)$ based at $b=0$.
3. [15 points total]
(a) [5 points] Evaluate the double integral $\int_{0}^{1} \int_{y}^{y^{2}+1} x y^{2} d x d y$.
(b) [5 points] Evaluate the double integral $\int_{0}^{2} \int_{x^{2}}^{4} x \sin \left(y^{2}\right) d y d x$.
(c) [5 points] Let R be the region which lies in the first quadrant below the line $y=x$ and inside the disk $x^{2}+y^{2}=25$. The region R is shown in the figure below. Evaluate the integral $\iint_{R} x y^{2} d A$.
4. [10 points total] Find the equation for the plane containing the point $P(2,2,3)$ and the line given by the parametric equations $x=4+t, y=3+2 t, z=4+3 t$.
5. [10 points total] Consider the function $z=f(x, y)=e^{(x+y)}+\tan ^{-1}\left(x+y^{2}\right)$.
(a) [4 points] Find the two first partial derivatives of $f(x, y)$.
(b) [4 points] Find the linear approximation to $f(x, y)$ at the point $(-1,1)$. Simplify your answer as much as possible.
(c) [2 points] Use the linear approximation you found in part (a) to estimate $f(-0.5,1.2)$.

NOTE: Do not simply evalutate the function using your calculator!
6. [10 points total] Let $g(x, y)$ be the distance from the origin to the point $P(x, y, f(x, y))$ on the surface $z=f(x, y)=\sqrt{(x+2 y-3)^{2}+1}$

(a) $[\mathbf{2}$ points] Find a formula for $g(x, y)$.
(b) [8 points] Find the point P on the surface $z=f(x, y)$ that is nearest the origin. HINT: instead of minimizing $g(x, y)$, minimize its square: $h(x, y)=(g(x, y))^{2}$.
7. [10 points total] A particle starts moving from the point $(0,2,1)$ with initial velocity $\vec{v}(0)=\langle-1,2,0\rangle$ and acceleration $\vec{a}(t)=\langle 2 t, 1,2-6 t\rangle$.
(a) [4 points] Determine the velocity $\vec{v}(t)$ and location $\vec{r}(t)$ of the particle at any time t.
(b) [4 points] Find the tangential and normal components of the acceleration at $t=1$.
(c) $[\mathbf{2}$ points $]$ Find the curvature of the particle's path at $t=1$.
8. [11 points total] Consider two curves with the following parametric equations:

$$
\vec{r}_{1}(t)=\langle\ln (t-1), \cos (t-2), t\rangle \text { and } \vec{r}_{2}(u)=\left\langle u^{2}-1, e^{u-1}, u+1\right\rangle .
$$

(a) [4 points] Find a value of t and a value of u so that $\vec{r}_{1}(t)=\vec{r}_{2}(u)=\langle 0,1,2\rangle$.
(b) [5 points] Find the angle between the tangent lines to the curves at the point $P(0,1,2)$.
(c) [2 points] Set up, but do not evaluate, the integral for the arclength of the curve \vec{r}_{2} from $P(0,1,2)$ to $Q(3, e, 3)$.
9. [12 points total] Consider the function

$$
f(x, y)=\sqrt{x^{2}+y^{2}-2 y+2}
$$

(a) [4 points] Sketch the level sets $f(x, y)=k$ for $k=1$ and $k=\sqrt{2}$.
(b) [4 points] Write down the equation of the tangent plane to the surface $z=f(x, y)$ at the point $P(2,1, \sqrt{5})$.
(c) [4 points] The surface $z=f(x, y)$ is a quadric surface. Identify it.

