Your Name

Student ID \#

Professor's Name

Your Signature
\square

TA's Name

- This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a non-graphing, non-programmable, scientific calculator. Do not share notes or calculators.
- Give your answers in exact form. Do not give decimal approximations.
- In order to receive credit, you must show your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	12	
3	10	
4	10	
5	10	

Problem	Total Points	Score
6	12	
7	10	
8	12	
9	12	
Total	100	

1. (12 points) The acceleration vector of a spaceship is

$$
\mathbf{a}(t)=\langle 2 t, 0,-\sin (t)\rangle \quad \text { for all } t \geq 0
$$

and the specified initial velocity and position are

$$
\mathbf{v}(0)=\langle 0,0,1\rangle \quad \text { and } \quad \mathbf{r}(0)=\langle 1,2,300\rangle .
$$

(a) Find the velocity function of the spaceship.
(b) Find the tangential component of the acceleration.
(c) Compute the ship's position at $t=\frac{\pi}{2}$.
2. (12 points) Suppose a 3-D curve is represented by the vector function

$$
\mathbf{r}(t)=\left\langle t^{2}-1, \frac{1}{3} t^{3}-2 t, t^{2}-2\right\rangle
$$

(a) Find the curvature at time t.
(b) At what point (x, y, z) does the curve have maximum curvature?
3. (10 points) True/False. Answer each question with a T for true or F for false. No justification for your answer is needed.
(a) If the \mathbf{T} and \mathbf{N} vectors of a vector function $\mathbf{r}(t)$ at $t=0$ are \mathbf{j} and \mathbf{k} respectively, then the \mathbf{B} vector at $t=0$ is \mathbf{i}.
(b) There is a function $g(x, y)$ such that $g_{x}(x, y)=x+\sin (x y)$ and $g_{y}(x, y)=y+\sin (x y)$.
(c) For any vectors \mathbf{a} and $\mathbf{b}, \operatorname{proj}_{\mathbf{a}} \mathbf{b}$ must be orthogonal to \mathbf{b}.
(d) The level curves of $z=\sqrt{9-x^{2}-y^{2}}$ are circles.
(e) If $\mathbf{u}=\langle 1,2,3\rangle$ and $\mathbf{v}=\langle 3,4,5\rangle$, then $\mathbf{u} \times \mathbf{v}=\langle-2,1,-2\rangle$.
(f) Planes $x+y+z=9$ and $x-3 y+2 z=4$ are perpendicular.
(g) If D is the domain given by $x^{2}+y^{2} \leq 4$, then $\pi \sqrt{3} \leq \iint_{D} \sqrt{4-x^{2}-y^{2}} d A \leq 2 \pi$.
(h) \qquad The curvature of a line is positive.
(i) \qquad The cross product $\left(\operatorname{proj}_{\mathbf{u}} \mathbf{v}\right) \times \mathbf{u}$ is zero for any two vectors \mathbf{u} and \mathbf{v}.
(j) \qquad The scalar projection comp $_{\mathbf{u}} \mathbf{v}$ can be positive, or zero, or negative.
4. (10 pts) Find the equation of the plane that contains the point $(0,0,0)$ and the line of intersection of the two planes $x-2 y-z=5$ and $4 x+4 y+14 z=2$.
5. (10 pts) Use the linear approximation of $f(x, y)=\left(y x^{2}-y^{4}\right)^{4 / 3}$ at $(x, y)=(3,1)$ to approximate the value of $f(2.9,1.05)$.
6. (12 pts) Find the absolute maximum and minimum values of $f(x, y)=x y^{2}-3 x+1$, on the half disk, $D=\left\{(x, y) \mid y \geq 0, x^{2}+y^{2} \leq 36\right\}$.
7. (10 pts) The region R is outside the circle $x^{2}+(y-3)^{2}=9$, inside the circle $x^{2}+y^{2}=9$ and in the first quadrant.
(a) Sketch the circles and shade the region R.
(b) Compute the area of R.
(c) Find the volume of the solid above the region R and below the plane $z=x$.
8. (12 pts) Given $f(x)=x \ln (1+5 x)$, answer the following.
(a) Compute the second degree Taylor polynomial $T_{2}(x)$ based at 0 .
(b) Use $T_{2}(x)$ you found above to estimate $f(0.02)$.
(c) Find an upper bound for your error from part (b) using Taylor's Inequality (the error formula).
(d) Compare your answer in (c) with the difference between the value $f(0.02)$ you get from your calculator and your estimate in (b). Which one is more? Why?
9. (12 pts) For $f(x)=x \cos \left(\frac{1}{2} x^{2}\right)$, do the following.
(a) Find the Taylor series for $f(x)$ based at 0 . Write your answer in Σ notation. Also, give the first 4 non-zero terms of the series.
(b) What is the tenth Taylor polynomial $T_{10}(x)$ for this function?
(c) Compute $f^{(17)}(0)$.

