
Math 126 Final Examination Autumn 2013

Your Name Your Signature

Student ID # Quiz Section

Professor’s Name TA’s Name

• This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

• This exam is closed book. You may use one 81
2
× 11 sheet of notes and a non-graphing,

non-programmable scientific calculator. Do not share notes or calculators.

• Unless otherwise specified, you should give your answers in exact form. (For example,
π

4
and

√
2 are in exact form and are preferable to their decimal approximations.)

• In order to receive full credit, you must show all of your work.

• Place a box around YOUR FINAL ANSWER to each question.

• If you need more room, use the backs of the pages and indicate to the reader that you have
done so.

• Raise your hand if you have a question.

Problem Total Points Score

1 12

2 12

3 10

4 10

5 14

Problem Total Points Score

6 10

7 8

8 12

9 12

Total 100
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1. (12 points) The acceleration of a particle is given by ~a(t) = 〈2(1 + t)−1/2, 0, 2t − 5〉, and its
initial velocity is ~v(0) = 〈4, 1, 0〉.

(a) Determine the velocity ~v(t) of the particle at any time t.

(b) Find the tangential and normal components of the acceleration at t = 3.

(c) Set up (but DO NOT EVALUATE) the integral that gives the distance traveled by the
particle from t = 0 to t = 3.
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2. (12 points) Consider two curves with the following parametric equations:

~r1(t) = 〈t+ 4, t+ 2, t2 − 23〉 and ~r2(s) = 〈s2, 4s− 5, 2
√
s− 2〉.

(a) These curves intersect at a point P . Find this point.

(b) Find the angle between the tangent lines to the curves at the point P . (Give the angle
in degrees, rounding your answer to two digits after the decimal.)

(c) Find the equation of the normal plane to ~r1(t) at the point P .
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3. (10 points) Let ` be the line through the point Q(1, 2, 0) and orthogonal to the plane

x− y + 2z = 10.

Let P be the plane that goes through the points A(1, 3, 2), B(−1, 3, 0), and C(0,−1, 4).

Find the point of intersection of the line ` and the plane P or show that no such point exists.
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4. (10 points) Consider the cardiod given by the polar function r = 2− 2 sin(θ) (shown below).

(a) Find the equation for the tangent line at the negative x-intercept.

(b) Set up (but DO NOT EVALUATE) a double integral in polar coordinates that represents
the area inside this cardiod and outside the circle centered at the origin with radius 2.



Math 126, Autumn 2013 Final Examination Page 5 of 10

5. (14 points) Consider the function f(x, y) = sin(x2 + y2). Let D be the unit disk:

D = {(x, y) : x2 + y2 ≤ 1}.

(a) Find all critical points of f(x, y) in D and classify each as a local maximum, a local
minimum, or a saddle point.

THIS PROBLEM CONTINUES ON THE NEXT PAGE.
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CONTINUED FROM PREVIOUS PAGE:

f(x, y) = sin(x2 + y2) and D = {(x, y) : x2 + y2 ≤ 1}.

(b) Find the absolute maximum and minimum values of f on D.

(c) Evaluate the integral

∫∫
D

f(x, y) dA.
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6. (10 points) Evaluate the integral∫ 1

0

∫ e

ey
sin(x lnx− x) dx dy.



Math 126, Autumn 2013 Final Examination Page 8 of 10

7. (8 points) Find the equation of the plane tangent to the surface x3 + y4 + z2 = 0 at the point
(−1, 0, 1).
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8. (12 points) Let f(x) = e−2x − 3x2.

(a) Find the second Taylor polynomial for f(x) based at b = 0.

(b) Give an upper bound for the error |T2(x)− f(x)| on the interval [−1, 1].

(c) There is a positive value of x near 0 that satisfies the equation e−2x = 3x2. Use your
answer to part (a) to approximate this value of x.
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9. (12 points)

(a) Write out the first four non-zero terms of the Taylor series for cos(2x) based at b = 0.

(b) Use part (a) and the identity cos2(x) = 1
2
(1+cos(2x)) to write out the first four non-zero

terms of the Taylor series for cos2(x) based at b = 0.

(c) Use your answer to part (b) to compute

lim
x→0

cos2 x− (1− x2)
x4

.


