Your Name

Your Signature
\square
Student ID \#

Professor's Name

TA's Name
\square

- CHECK that your exam contains 8 problems on 9 pages.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a scientific calculator with no graphing, programming, or calculus capabilities. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	15	
2	8	
3	10	
4	11	

Problem	Total Points	Score
5	12	
6	20	
7	12	
8	12	
Total	100	

1. (15 points) Suppose \mathbf{a} and \mathbf{b} are vectors about which we know:

$$
|\mathbf{a}|=3,|\mathbf{b}|=2, \text { and } \mathbf{a} \times \mathbf{b}=<1,5,1>.
$$

Compute the following quantities, if possible. If you cannot find a particular value because there is not enough information, indicate this. Place a box around your final answer.
(a) $\mathbf{a} \cdot \mathbf{b}$
(b) $|\mathbf{a} \cdot \mathbf{b}|$
(c) the acute angle between a line in the direction of \mathbf{a} and a line in the direction of \mathbf{b}
(d) $\left|\operatorname{comp}_{\mathbf{a}} \mathbf{b}\right|$
(e) an equation of the plane through the origin parallel to both \mathbf{a} and \mathbf{b}
2. (8 points) Consider the graphs below. Determine which picture each equation listed below describes, and write your answer next to the equation. No need to justify your answers.

(B)

(C)

(E)

(F)
(a) Equation $x^{2}-y+z^{2}=1$ corresponds to graph: \qquad
(b) Equation $x^{2}-y-z^{2}=0$ corresponds to graph: \qquad
(c) Equation $-x^{2}+y^{2}-z^{2}=1$ corresponds to graph: \qquad
(d) Equation $z=\cos (x-y)$ corresponds to graph: \qquad
3. (10 points) Find parametric equations for the line that is tangent to the curve

$$
\vec{r}(t)=\left\langle\frac{8}{t},-\frac{1}{2} t^{2}, \frac{1}{8} t^{3}\right\rangle
$$

and parallel to the plane $x=y$.
4. (11 points) Consider the vector function

$$
\vec{r}(t)=\left\langle\frac{2 \sqrt{6}}{3} t^{3 / 2}, t \sin (3 t), t \cos (3 t)\right\rangle .
$$

Suppose that a is a positive number and that the length of $\vec{r}(t)$ from $t=0$ to $t=a$ is 160 . Find the value of a.
5. (12 points) Find the absolute minimum and maximum values of the function

$$
F(x, y)=2 x^{2}+y^{2}+8 y
$$

on the region $D=\left\{(x, y): y \geq 0, x^{2}+y^{2} \leq 25\right\}$.
6. (20 points) Evaluate the double integrals.
(a) $\int_{0}^{4} \int_{\sqrt{y}}^{2} \ln \left(x^{3}+1\right) d x d y$
(b) $\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}} 3 x+y^{2} d y d x$
7. (12 points) Let $f(x)=4 \sqrt{x}$.
(a) Find $T_{2}(x)$, the second Taylor polynomial for $f(x)$ based at $b=1$.
(b) Use Taylor's inequality to find an upper bound for $\left|f(x)-T_{2}(x)\right|$ on the interval $\left[\frac{1}{4}, \frac{7}{4}\right]$.
8. (12 points) Let

$$
f(x)=\frac{x^{2}}{x^{2}-e^{2}}+x \sin (\pi x-x)
$$

(a) Find the Taylor series for $f(x)$ based at $b=0$. Write the series using one Σ and give its interval of convergence.
(b) Calculate $f^{(674)}(0)$, the $674^{\text {th }}$ derivative of $f(x)$ at $x=0$.

