Your Name Your Signature Student ID # Quiz Section Professor's Name TA's Name

- CHECK that your exam contains 8 problems on 9 pages.
- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes and a scientific calculator with no graphing, programming, or calculus capabilities. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.

• Place a box around **YOUR FINAL ANSWER** to each question.

- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Math 126

Problem	Total Points	Score
1	15	
2	8	
3	10	
4	11	

Problem	Total Points	Score
5	12	
6	20	
7	12	
8	12	
Total	100	

1. (15 points) Suppose **a** and **b** are vectors about which we know:

$$|\mathbf{a}| = 3$$
, $|\mathbf{b}| = 2$, and $\mathbf{a} \times \mathbf{b} = <1, 5, 1 >$.

Compute the following quantities, if possible. If you cannot find a particular value because there is not enough information, indicate this. Place a box around your final answer.

(a) $\mathbf{a} \cdot \mathbf{b}$

(b) $|\mathbf{a} \cdot \mathbf{b}|$

(c) the acute angle between a line in the direction of \mathbf{a} and a line in the direction of \mathbf{b}

(d) $|comp_{\mathbf{a}}\mathbf{b}|$

(e) an equation of the plane through the origin parallel to both \mathbf{a} and \mathbf{b}

2. (8 points) Consider the graphs below. Determine which picture each equation listed below describes, and write your answer next to the equation. No need to justify your answers.

(a) Equation $x^2 - y + z^2 = 1$ corresponds to graph: _____

- (b) Equation $x^2 y z^2 = 0$ corresponds to graph: _____
- (c) Equation $-x^2 + y^2 z^2 = 1$ corresponds to graph: _____
- (d) Equation $z = \cos(x y)$ corresponds to graph: _____

3. (10 points) Find parametric equations for the line that is tangent to the curve

$$\vec{r}(t) = \left\langle \frac{8}{t}, -\frac{1}{2}t^2, \frac{1}{8}t^3 \right\rangle$$

and parallel to the plane x = y.

4. (11 points) Consider the vector function

$$\vec{r}(t) = \left\langle \frac{2\sqrt{6}}{3} t^{3/2}, t\sin(3t), t\cos(3t) \right\rangle.$$

Suppose that a is a positive number and that the length of $\vec{r}(t)$ from t = 0 to t = a is 160. Find the value of a. 5. (12 points) Find the absolute minimum and maximum values of the function

$$F(x,y) = 2x^2 + y^2 + 8y$$

on the region $D = \{(x, y) : y \ge 0, x^2 + y^2 \le 25\}.$

6. (20 points) Evaluate the double integrals.

(a)
$$\int_0^4 \int_{\sqrt{y}}^2 \ln(x^3 + 1) \, dx \, dy$$

(b)
$$\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} 3x + y^2 \, dy \, dx$$

- 7. (12 points) Let $f(x) = 4\sqrt{x}$.
 - (a) Find $T_2(x)$, the second Taylor polynomial for f(x) based at b = 1.

(b) Use Taylor's inequality to find an upper bound for $|f(x) - T_2(x)|$ on the interval $\left[\frac{1}{4}, \frac{7}{4}\right]$.

8. (12 points) Let

$$f(x) = \frac{x^2}{x^2 - e^2} + x\sin(\pi x - x).$$

(a) Find the Taylor series for f(x) based at b = 0. Write the series using one Σ and give its interval of convergence.

(b) Calculate $f^{(674)}(0)$, the 674th derivative of f(x) at x = 0.