1. (a) Yes, the three points form a right triangle since $\overrightarrow{P Q}=\langle 1,1,-3\rangle$ and $\overrightarrow{Q R}=\langle 1,2,1\rangle$ and $\overrightarrow{P Q} \cdot \overrightarrow{Q R}=0$.
(b) $7 x-4 y+z=2$
(c) One possibility: $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, 2-14 \cos t+8 \sin t\rangle$
2. (a) One possibility: $x=1-2 t, y=-1+3 t, z=4 t$
(b) $-2 x+3 y+4 z=0$
3. (a) iii; (b) i; (c) ii and iv
4. $\left(\frac{1-t}{2}, \frac{1-t}{2}, \frac{|1-t|}{\sqrt{2}}+1\right)$
5. $M_{y}=\frac{1}{2} e-1$
6. (a) $t=-1, t=1$
(b) No. The binormal vector is parallel to $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\langle-3 \sin t,-2 \cos t,-6\rangle$. This is parallel to the z-axis if and only if it is a constant multiple of $\langle 0,0,1\rangle$. This would happen only at a value of t such that $\sin t=\cos t=0$ and there is no such t.
(c) $a_{T}=\frac{-5 \sin t \cos t}{\sqrt{4 \sin ^{2} t+9 \cos ^{2} t+1}}$
(d) infinitely many (those values of t such that $\sin t$ or $\cos t$ is 0)
7. (a) (A)
(b) $\frac{3 \pi}{4}-2$
(c) $y=2$ and $y=-\frac{1}{4}$
8. $f(x)=x^{2}+x^{3}-x^{4}+\frac{3}{2} x^{6}+\ldots$
9. (a) $T_{2}(x)=x+x^{2}$
(b) One possibility: $\left|f(x)-T_{2}(x)\right|<\frac{1}{6}$
(Uses the bound $\left|f^{\prime \prime \prime}(x)\right|=2 e^{x}|\cos x-\sin x|<2 e^{x}(2) \leq 4 e^{1 / 2}<4 \sqrt{4}=8$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.)
