Your Name


Student ID \#

Professor's Name


Your Signature
$\square$


TA's Name


- CHECK that your exam contains 8 problems on 8 pages.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

| Problem | Total Points | Score |
| :---: | :---: | :---: |
| 1 | 12 |  |
| 2 | 12 |  |
| 3 | 12 |  |
| 4 | 11 |  |
| 5 | 12 |  |


| Problem | Total Points | Score |
| :---: | :---: | :---: |
| 6 | 14 |  |
| 7 | 15 |  |
| 8 | 12 |  |
| Total | 100 |  |

1. (12 points) Below are a series of multiple choice questions. Circle the correct answer. You do not need to show your work.
(a) Let $\mathcal{P}$ be the plane given by the equation $2 x+y-z=5$. Choose the sentence that best describes the plane $\mathcal{Q}$ given by the equation $2 x+y-z=10$.
a. $\mathcal{Q}$ is parallel to $\mathcal{P}$.
b. $\mathcal{Q}$ is equal to $\mathcal{P}$.
c. $\mathcal{Q}$ intersects $\mathcal{P}$ in a line.
(b) Consider the set of points $C$ whose distance to the origin is twice the distance to the $x$-axis. Which of the following best describes $C$ ?
a. a cone
b. an elliptic paraboloid
c. a hyperboloid of two sheets
d. none of these
(c) Suppose $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}|>0$. Then $\mathbf{a}$ and $\mathbf{b}$ are
a. parallel.
b. perpendicular.
c. both the zero vector.
(d) Which of the following surfaces does the curve $\mathbf{r}(t)=\left\langle t, t, 2 t^{2}\right\rangle$ lie on?
a. $x^{2}+y^{2}=z^{2}$
b. $x=0$
c. $x^{2}+y^{2}=z$
d. all of these
e. none of these
2. (12 points) Consider the vector function $\mathbf{r}(t)=\langle t, \cos (t), \sin (t)\rangle$.
(a) Compute the velocity vector $\mathbf{v}(t)$ and the unit tangent vector $\mathbf{T}(t)$.
(b) Compute the unit normal vector $\mathbf{N}(t)$.
(c) Compute the curvature of $\mathbf{r}(t)$ at the point $t=1209.17$.
3. (12 points) Find and classify all critical points of

$$
f(x, y)=2 x^{3}+9 x y^{2}+15 x^{2}+27 y^{2} .
$$

4. (11 points) Suppose you need to know an equation of the plane tangent to a surface $S$ at the point $P(-7,4,-33)$. You don't have an equation for $S$ but you know that the following curves lie on $S$ :

$$
\mathbf{r}_{1}(t)=\left\langle 2 t-9,5-t,-3 t^{2}+26 t-56\right\rangle \text { and } \mathbf{r}_{2}(u)=\langle-\sqrt{u}, \sqrt{u-33},-33\rangle .
$$

Find the equation of the plane tangent to $S$ at $P$.
Simplify your final answer to the form $z=A x+B y+C$.
5. (12 points) Evaluate the definite integral

$$
\int_{0}^{1} \int_{e^{y}}^{e} \frac{\sqrt{1+(\ln x)^{2}}}{x} d x d y
$$

6. (14 points) Find the volume of the solid that is above the $x y$-plane, within the sphere $x^{2}+y^{2}+z^{2}=1$, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
7. (15 points) Let $f(x)=\sqrt{x^{3}}$.
(a) Find the second Taylor polynomial $T_{2}(x)$ based at $b=1$.
(b) Find an upper bound for $\left|T_{2}(x)-f(x)\right|$ on the interval $[1-a, 1+a]$. Assume $0<a<1$. Your answer should be in terms of $a$.
(c) Find a value of $a$ such that $0<a<1$ and $\left|T_{2}(x)-f(x)\right| \leq 0.004$ for all $x$ in $[1-a, 1+a]$.
8. (12 points) The Basic Taylor Series are:

$$
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \quad \cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!} \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \quad \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

(a) Use the list of Basic Taylor Series to find the Taylor series for $f(x)=x^{4} \arctan \left(x^{3}\right)$ based at $b=0$. (Use $\Sigma$-notation.)
(b) Find the open interval on which the series in part (a) converges.
(c) Find $f^{(2017)}(0)$. (That is, the $2017^{\text {th }}$ derivative of $f$ at 0 .) Give an exact answer.

