1. (8 points) Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be three-dimensional head-to-tail unit vectors in the $x y$-plane, forming an equilateral triangle, as pictured. Compute the following:
(There is enough information provided to compute a specific value or vector as an answer to each of these questions.)
(a) $\mathbf{u} \cdot \mathbf{u}=|\overrightarrow{\mathbf{u}}|^{2}=\square$
(b) $\mathbf{u} \cdot \mathbf{v}=|\vec{u}||\vec{v}| \cos \theta=1 \cdot 1 \cdot \frac{-1}{2}=\frac{-1}{2}$

(c) $\mathbf{u}+\mathbf{v}+\mathbf{w}=\overrightarrow{0}$ (since they form a cycle)
(d) $|\mathbf{u} \times(\mathbf{v} \times \mathbf{w})|=|\vec{v} \times \vec{w}|=1 \cdot 1 \cdot \sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$

$$
|\vec{u} \times(\vec{v} \times \vec{w})|=1 \cdot \frac{\sqrt{3}}{2} \cdot \sin \left(\frac{\pi}{2}\right)=\frac{\sqrt{3}}{2}
$$

2. (6 points) Answer the following (unrelated) questions. No need to justify your answer.
(a) Give an example of the equation of a plane that is perpendicular to the plane $z=x-y$. Write your answer in the form $A x+B y+C z=D$.

$$
\begin{array}{r}
x+y=0, \\
\\
(\text { for example } \\
(\text { many answers ok) }
\end{array}
$$

(b) Which of the following is a level curve (i.e. a trace when $z=k$, a constant) for the surface $x^{2}-y^{2}+z=0$? Circle all that apply.

(c) One of these is the graph of $r=5 \cos (\theta)-\cos (5 \theta)$. Circle it.

3. (12 points) Consider the helix-like curve $\mathbf{r}(t)=\left\langle\cos (t), \sin (t), \frac{2 t^{3 / 2}}{3}\right\rangle, t \geq 0$.
(a) Write a Cartesian equation for a surface that contains this curve.

$$
x^{2}+y^{2}=1 \quad\left(\text { because } \cos ^{2} t+\sin ^{2} t=1\right)
$$

(b) Compute the arc length of this curve from $t=0$ to $t=a$, where a is an arbitrary positive constant.

$$
\vec{r}^{\prime}(t)=\langle-\sin t \cos t, \sqrt{t}\rangle
$$

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle-\sin t<\cos t, \sqrt{t}\rangle \\
& \left.\int_{0}^{a} \sqrt{\sin ^{2} t+\cos ^{2} t+(\sqrt{\tau})^{2}} d t=\int_{\substack{u \\
u=1+\tau \\
d u=d \tau}}^{a} \sqrt{1+t} d t=\int_{1}^{a+1} \sqrt{u} d u=\left(\frac{2 u^{3 / 2}}{3}\right)\right]_{1}^{a+1}=\frac{2}{3}\left((a+1)^{3 / 2}-1\right)
\end{aligned}
$$

(c) Compute the curvature $\kappa(t)$ of this curve, and determine $\lim _{t \rightarrow \infty} \kappa(t)$.

$$
\begin{gathered}
\vec{r}^{\prime}(t)=\langle-\sin t, \cos t, \sqrt{t}\rangle \rightarrow\left|\vec{r}^{\prime}(t)\right|=\sqrt{1+t} \\
\vec{r}^{\prime \prime}(t)=\left\langle-\cos t,-\sin t \frac{1}{2 \sqrt{t}}\right\rangle \\
\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime \prime}(t)=\left\langle\frac{\cos (t)}{2 \sqrt{t}}+\sin (t) \sqrt{t},-\sqrt{t} \cos (t)+\frac{\sin (t)}{2 \sqrt{t}}, \mid\right\rangle \\
k(t)=\frac{\sqrt{\frac{1}{4 t}+t+1}}{(\sqrt{t+1})^{3}} \quad\left|\vec{r}^{\prime}(t) \times r_{r}^{\prime \prime}(t)\right|=\sqrt{\frac{1}{4 t}} \\
\lim _{t \rightarrow \infty} K(t)=O
\end{gathered}
$$

4. (12 points) Find and classify all critical points of the function $f(x, y)=4 x^{3}-2 x+2 x y-y^{2}$.

$$
\begin{gathered}
f_{x}(x, y)=12 x^{2}-2+2 y=0 \rightarrow 12 x^{2}+2 x-2=0 \\
f_{y}(x, y)=2 x-2 y=0 \rightarrow x=y
\end{gathered} \begin{gathered}
\downarrow-1)(2 x+1)=0 \\
2\left(3 x-1, \frac{1}{3}\right) \text { and }\left(\frac{-1}{2}, \frac{-1}{2}\right)
\end{gathered}
$$

To dassify:

$$
\begin{aligned}
& f_{x x}(x, y)=24 x \\
& f_{y y}(x, y)=-2 \\
& f_{x y}(x, y)=2
\end{aligned}
$$

Saddle point @ $\left(\frac{1}{3}, \frac{1}{3}\right)$
Local max @ $\left(\frac{-1}{2}, \frac{-1}{2}\right)$
5. (12 points) Let $z=f(x, y)$ be the function defined by the implicit equation

$$
z \sqrt{x^{2}+y^{2}}+e^{z+1}+y=0
$$

(a) Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(3,4,-1)$.
$\frac{\partial}{\partial x}$:

$$
\frac{\partial z}{\partial x} \sqrt{x^{2}+y^{2}}+\frac{x z}{\sqrt{x^{2}+y^{2}}}+\frac{\partial z}{\partial x} e^{z+1}=0
$$

$$
5 \frac{\partial z}{\partial x}-\frac{3}{5}+\frac{\partial z}{\partial x}=0 \quad \frac{\partial z}{\partial x}=\frac{1}{10}
$$

$$
\frac{\partial}{\partial y}: \quad \frac{\partial z}{\partial y} \sqrt{x^{2}+y^{2}}+\frac{y z}{\sqrt{x^{2}+y^{2}}}+\frac{\partial z}{\partial y} e^{z+1}+1=0
$$

$$
5 \frac{\partial z}{\partial y}-\frac{4}{5}+\frac{\partial z}{\partial y}+1=0 \quad \frac{\partial z}{\partial y}=\frac{-1}{30}
$$

(b) Use linear approximation to estimate the value of $f(3.07,4.12)$.

$$
f(3.07,4.12) \approx \frac{1}{10}(3.07-3)-\frac{1}{30}(4.12-4)+(-1)=-0.997
$$

6. (13 points) Suppose $f(x, y)$ is continuous and D is a region in the $x y$-plane such that

$$
\iint_{D} f(x, y) d A=\int_{0}^{1} \int_{y-2}^{-\sqrt{y}} f(x, y) d x d y
$$

(a) Sketch D and reverse the order of integration.

$$
\int_{-2}^{-1} \int_{0}^{x+2} f(x, y) d y d x+\int_{-1}^{0} \int_{0}^{x^{2}} f(x, y) d y d x
$$

(b) Let D be the region described above and suppose a lamina in the shape of D has variable density $\rho(x, y)=-12 x$. Compute the mass of the lamina.
(You do not need to use the same setup from part (a) to compute this.)

$$
\begin{aligned}
& \left.\int_{0}^{1} \int_{y-2}^{-\sqrt{y}}-12 x d x d y=\int_{0}^{1}\left(-6 x^{2}\right)\right]_{y-2}^{-\sqrt{y}} d y=\int_{0}^{1}\left(-6 y+6(y-2)^{2}\right) d y \\
& \left.=\int_{0}^{1}\left(6 y^{2}-30 y+24\right) d y=\left(2 y^{3}-15 y^{2}+24 y\right)\right]_{0}^{1}=11
\end{aligned}
$$

7. (12 points) Use polar coordinates to find the volume of the solid below the cone $\sqrt{x^{2}+y^{2}}=5 z$, above the $x y$-plane, and inside the cylinder $x^{2}+y^{2}=10 y$.

$$
z=\frac{\sqrt{x^{2}+y^{2}}}{5}
$$

$$
\left.=\int_{0}^{\pi}\left(\frac{r^{3}}{15}\right)\right]_{0}^{10 \sin \theta} d \theta
$$

$$
=\int_{0}^{\pi} \frac{1000}{15} \sin ^{3} \theta d \theta
$$

$$
=\frac{200}{3} \int_{0}^{\pi} \sin \theta\left(1-\cos ^{2} \theta\right) d \theta=\frac{200}{3} \int_{1}^{-1}-\left(1-u^{2}\right) d u
$$

$$
\left.\begin{array}{l}
u=\cos \theta \\
d u=-\sin \theta d \theta
\end{array} \quad=\frac{200}{3}\left(-u+\frac{u^{3}}{3}\right)\right]_{1}^{-1}
$$

$$
=\frac{200}{3}\left(\left(1-\frac{1}{3}\right)-\left(-1+\frac{1}{3}\right)\right)
$$

$$
=\frac{800}{9}
$$

8. (13 pts) For ALL parts below, let $f(x)=\frac{4 x}{2 x+1}-x e^{6 x}$ and $b=0$.
(a) Give the Taylor series for $f(x)$ based at b.

Give your final answer in Sigma notation using one Sigma sign.

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
& \frac{1}{2 x+1}=\frac{1}{1-(-2 x)}=\sum_{k=0}^{\infty}(-2 x)^{k}=(-2)^{k} x^{k} \quad e^{6 x}=\sum_{k=0}^{\infty} \frac{(6 x)^{k}}{k!}=\sum_{k=0}^{\infty} \frac{6^{k} x^{k}}{k!} \\
& \frac{4 x}{2 x+1}=\sum_{k=0}^{\infty} 4(-2)^{k} x^{k+1} \sum_{k=0}^{\infty} \frac{6^{k} x^{k+1}}{k!} \\
& \sum_{k=0}^{6 x+1}-x e^{\infty}=\left(4(-2)^{k}-\frac{6^{k}}{k!}\right) x^{k+1}
\end{aligned}
$$

(b) Give the open interval of convergence for your answer in part (a).

$$
\frac{1}{1-x} \text { converges when }-1<x<1 \text {. }
$$

$$
\frac{1}{1-(-2 x)} \text { converges when }-1<-2 x<1:\left(\frac{-1}{2}, \frac{1}{2}\right)
$$

Other operations don't change this.
(c) Use the first three nonzero terms of the Taylor series to estimate the value of $f\left(\frac{1}{10}\right)$. Give your final answer to three digits after the decimal.

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left(4(-2)^{k}-\frac{6^{k}}{k!}\right) x^{k+1}=3 x-14 x^{2}-2 x^{3}+\ldots \\
& f\left(\frac{1}{10}\right) \approx \frac{3}{10}-\frac{14}{100}-\frac{2}{1000}=.158
\end{aligned}
$$

9. (12 pts) For ALL parts below, consider Taylor polynomials for $g(x)=e^{x / 2}$ based at $b=1$.
(a) Find the third Taylor polynomial, $T_{3}(x)$, for $g(x)$ based at $b=1$.
$f(x)=e^{x / 2} \quad f(b)=\sqrt{e}$
$f^{\prime}(x)=\frac{1}{2} e^{x / 2} \quad f^{\prime}(b)=\frac{1}{2} \sqrt{e}$
$f^{\prime \prime}(x)=\frac{1}{4} e^{x / 2} \quad f^{\prime \prime}(b)=\frac{1}{4} \sqrt{e}$
$f^{\prime \prime \prime}(x)=\frac{1}{8} e^{x / 2} \quad f^{\prime \prime \prime}(b)=\frac{1}{8} \sqrt{e}$

$$
T_{3}(x)=\sqrt{e}+\frac{1}{2} \sqrt{e}(x-1)+\frac{1}{8} \sqrt{e}(x-1)^{2}+\frac{1}{48} \sqrt{e}(x-1)^{3}
$$

(b) On the interval $I=[0,2]$, for which of the values of n below does Taylor's inequality guarantee that $\left|f(x)-T_{n}(x)\right|<0.001$?
You must show enough error bound calculations to justify your answer.
Circle ALL that apply: $n=2 \quad n=3 \quad n=4 \quad n=5 \quad n=6$
$f^{(n)}(x)=\frac{1}{2^{n}} e^{x / 2}$
$O_{n}[0,2]$ this is at most $\frac{1}{2^{n}} e$.
$S_{0}:\left|f(x)-T_{n}(x)\right|<\left(\frac{1}{(n+1)!}\right) \underbrace{\left(\frac{1}{2^{n+1}}\right.}_{M} e)\left.\right|^{n+1}=\frac{e}{2^{n+1}(n+1)!}$
$n=2: \frac{e}{2^{3} \cdot 3!} \approx .057$
$n=3: \frac{e}{2^{4} \cdot 4!} \approx .007$ no.
$n=4: \frac{e}{2^{5} \cdot 5!} \approx .0007$ yeah!

