Math 126	Final Examination	Autumn 2021
Your Name	Your Signature	
Student ID #		Quiz Section
Professor's Name	TA's Name	

- CHECK that your exam contains 8 problems on 6 double-sided pages, including this cover sheet. The back of the first page and both sides of the last page are reserved for scratch-work.
- This exam is closed book. You may use one $8\frac{1}{2}$ " × 11" sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the back of the first page or either side of the last page and indicate that you have done so. If you *still* need more room, ask for more scratch paper.
- Do not write within 1 centimeter of the edge of the page.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	15	
2	12	
3	14	
4	8	
5	14	

Problem	Total Points	Score
6	12	
7	15	
8	10	
Total	100	

You may use this page for scratch-work.

All work on this page will be ignored unless you write & circle "see first page" below a problem.

1.	(3 points per part) Suppose a and b are nonzero vectors in \mathbb{R}^3 . Decide whether each of the following statements is always true, sometimes true, or never true. (Circle one.)								
	If your answer is always or never , <u>briefly explain why</u> (one sentence is enough).								
	If your answer is sometimes , give an example where it's true and an example where it's false								
	(a) Berry a	$\mathbf{a} \cdot \mathbf{a} > 0$	Always	Sometimes	Never				
	(b)	$\mathbf{a} imes \mathbf{b} = 2\mathbf{a}$	Always	Sometimes	Never				
	(c)	$ \mathbf{a} \times \mathbf{b} = \mathbf{a} \cdot \mathbf{b}$	Always	Sometimes	Never				
	(d)	$\mathrm{comp}_{\mathbf{a}}\mathbf{b} > \mathbf{b} $	Always	Sometimes	Never				
	(e)	$\mathrm{proj}_{\mathbf{a}}\mathbf{b}=\mathbf{b}$	Always	Sometimes	Never				

- 2. (4 points per part) Consider the vector function $\mathbf{r}(t) = \langle 3\cos(t) + 1, 4\cos(t) + 2, 5\sin(t) + 7 \rangle$.
 - (a) The space curve for $\mathbf{r}(t)$ lies in a plane. Find the equation of that plane.

(b) Find parametric equations for the line tangent to $\mathbf{r}(t)$ at (1, 2, 2).

(c) Find $\mathbf{T}(t)$, the unit tangent vector to $\mathbf{r}(t)$.

- 3. (7 points per part) Consider the function $f(x, y) = xy xy^3$.
 - (a) Find all the critical points of f on \mathbf{R}^2 and classify each critical point.

(b) Find the absolute maximum and minimum values of f on the triangular region bounded by the lines y = x, y = 1 and x = 0. 4. (8 points) Find $\frac{\partial z}{\partial x}$ if x, y, z are related by the implicit equation

 $x\sin z + e^{xy} = z.$

5. (7 points per part) Compute the following integrals.

(a)
$$\int_0^1 \int_0^{\cos^{-1}(y)} \sin(\sin(x)) \, dx \, dy.$$

(b) $\int_0^1 \int_x^{\sqrt{2-x^2}} e^{x^2+y^2} \, dy \, dx.$

6. (12 points) A lamina occupies the rectangle $\mathcal{R} = [0, 4] \times [0, 2]$. Find its center of mass if the density at each point is given by the function $\rho(x, y) = x + y^2$.

- 7. (5 points per part) For all parts, consider $f(x) = \ln(x+2)$ based at b = 1. (**NOT based at zero!**)
 - (a) Find the third Taylor polynomial, $T_3(x)$, for f(x) based at b = 1.

(b) Use Taylor's inequality to find an upper bound (as sharp as possible) for the error $|f(x) - T_2(x)|$ on the interval [-0.5, 2.5], where $T_2(x)$ is the second Taylor polynomial of f(x) centered at b = 1.

(c) Find the smallest value of n such that Taylor's inequality guarantees that the error $|f(x) - T_n(x)| < 0.02$ for all x in the interval [-0.5, 2.5], where $T_n(x)$ is the nth Taylor polynomial of f(x) centered at b = 1.

- 8. Consider the function $f(x) = x \sin(x^2)$.
 - (a) (6 points) Find the Taylor series of $f(x) = x \sin(x^2)$ based at b = 0. Use the sigma sum notation $\sum_{k=...}^{\infty}$ to express the Taylor series.

(b) (4 points) Use the series found in (a) to find $f^{(507)}(0)$ (i.e., the 507th order derivative of f at 0.)

You may use this page for scratch-work.

All work on this page will be ignored unless you write & circle "see last page" below a problem.

You may use this page for scratch-work.

All work on this page will be ignored unless you write & circle "see last page" below a problem.