Your Name
\square
Student ID \#
\square
Professor's Name

Your Signature
\square

Quiz Section

TA's Name

- CHECK that your exam contains 8 problems on 6 double-sided pages, including this cover sheet. The back of the first page and both sides of the last page are reserved for scratch-work.
- This exam is closed book. You may use one $8 \frac{1}{2} " \times 11$ " sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the back of the first page or either side of the last page and indicate that you have done so. If you still need more room, ask for more scratch paper.
- Do not write within 1 centimeter of the edge of the page.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	15	
2	12	
3	14	
4	8	
5	14	

Problem	Total Points	Score
6	12	
7	15	
8	10	
Total	100	

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see first page" below a problem.

1. (3 points per part) Suppose \mathbf{a} and \mathbf{b} are nonzero vectors in \mathbf{R}^{3}. Decide whether each of the following statements is always true, sometimes true, or never true. (Circle one.)
If your answer is always or never, briefly explain why (one sentence is enough). If your answer is sometimes, give an example where it's true and an example where it's false.
(a) $\mathbf{a} \cdot \mathbf{a}>0$
Always Sometimes
Never

Remember, for full credit, you must include a short explanation (for Always or Never) or examples (for Sometimes)!
(b) $\mathbf{a} \times \mathbf{b}=2 \mathbf{a}$

Always Sometimes Never
(c) $|\mathbf{a} \times \mathbf{b}|=\mathbf{a} \cdot \mathbf{b} \quad$ Always Sometimes Never
(d) $\operatorname{comp}_{\mathbf{a}} \mathbf{b}>|\mathbf{b}| \quad$ Always \quad Sometimes Never
(e) $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\mathbf{b} \quad$ Always \quad Sometimes Never
2. (4 points per part) Consider the vector function $\mathbf{r}(t)=\langle 3 \cos (t)+1,4 \cos (t)+2,5 \sin (t)+7\rangle$.
(a) The space curve for $\mathbf{r}(t)$ lies in a plane. Find the equation of that plane.
(b) Find parametric equations for the line tangent to $\mathbf{r}(t)$ at $(1,2,2)$.
(c) Find $\mathbf{T}(t)$, the unit tangent vector to $\mathbf{r}(t)$.
3. (7 points per part) Consider the function $f(x, y)=x y-x y^{3}$.
(a) Find all the critical points of f on \mathbf{R}^{2} and classify each critical point.
(b) Find the absolute maximum and minimum values of f on the triangular region bounded by the lines $y=x, y=1$ and $x=0$.
4. (8 points) Find $\frac{\partial z}{\partial x}$ if x, y, z are related by the implicit equation

$$
x \sin z+e^{x y}=z .
$$

5. (7 points per part) Compute the following integrals.
(a) $\int_{0}^{1} \int_{0}^{\cos ^{-1}(y)} \sin (\sin (x)) d x d y$.
(b) $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} e^{x^{2}+y^{2}} d y d x$.
6. (12 points) A lamina occupies the rectangle $\mathcal{R}=[0,4] \times[0,2]$. Find its center of mass if the density at each point is given by the function $\rho(x, y)=x+y^{2}$.
7. (5 points per part) For all parts, consider $f(x)=\ln (x+2)$ based at $b=1$. (NOT based at zero!)
(a) Find the third Taylor polynomial, $T_{3}(x)$, for $f(x)$ based at $b=1$.
(b) Use Taylor's inequality to find an upper bound (as sharp as possible) for the error $\left|f(x)-T_{2}(x)\right|$ on the interval $[-0.5,2.5]$, where $T_{2}(x)$ is the second Taylor polynomial of $f(x)$ centered at $b=1$.
(c) Find the smallest value of n such that Taylor's inequality guarantees that the error $\left|f(x)-T_{n}(x)\right|<0.02$ for all x in the interval $[-0.5,2.5]$, where $T_{n}(x)$ is the $n^{\text {th }}$ Taylor polynomial of $f(x)$ centered at $b=1$.
8. Consider the function $f(x)=x \sin \left(x^{2}\right)$.
(a) (6 points) Find the Taylor series of $f(x)=x \sin \left(x^{2}\right)$ based at $b=0$. Use the sigma sum notation $\sum_{k=\ldots}^{\infty}$ to express the Taylor series.
(b) (4 points) Use the series found in (a) to find $f^{(507)}(0)$ (i.e., the $507^{\text {th }}$ order derivative of f at 0 .)

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see last page" below a problem.

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see last page" below a problem.

