1. HINT: Let $\vec{n}_{1}=\langle-1,1,4\rangle$ and $\vec{n}_{2}=\langle 1,-3,2\rangle$, normal vectors for the two planes. A direction vector for the line of intersection is $\vec{v}=\vec{n}_{1} \times \vec{n}_{2}=\langle 14,6,2\rangle$. To find a point on the line, you may assume, for instance, that the line intersects the $x y$-plane and find the point on both planes with z-coordinate 0 : $(-18,-11,0)$.
ANSWER: (other answers are possible) $x=-18+14 t, y=-11+6 t, z=2 t$
2. (a) ANSWER: $\kappa(\pi)=\frac{2}{1+a^{2}}$
(b) ANSWER: $a=9$
3. (a) ANSWER: $z=y+1$
(b) HINT: $\frac{\partial z}{\partial x}=3 x^{2} y^{2}$ and $\frac{\partial z}{\partial y}=2 x^{3} y$. So, a normal vector of the tangent plane is $\left\langle 3 x_{0}^{2} y_{0}^{2}, 2 x_{0}^{3} y_{0},-1\right\rangle$. This must be parallel to $\langle 3,18,-1\rangle$.
ANSWER: $\left(3, \frac{1}{3}, 3\right)$ and $\left(-3,-\frac{1}{3},-3\right)$
4. HINT: Since $x y z=100, z=\frac{100}{x y}$. So, $S=x+2 y+\frac{300}{x y}$. The only critical point is $(2 \sqrt[3]{75}, \sqrt[3]{75})$. You can use the second derivative test to show that this gives a local minimum. Since it is the only critical point, this gives the global minimum.
ANSWER: The minimum possible value of S is $\frac{450}{(75)^{2 / 3}}$.
5. (a) NOTE: The question as posed is ambiguous. The intended region is bounded above by $y=5-4 x^{2}$ and below by $y=x^{2}$.
HINT: $\iint_{R} x y d A=\int_{0}^{1} \int_{x^{2}}^{5-4 x^{2}} x y d y d x$.
ANSWER: $\frac{5}{2}$
(b) HINT: You must change the order of integration:

$$
\int_{0}^{3} \int_{y^{2}}^{9} y e^{x^{2}} d x d y=\int_{0}^{9} \int_{0}^{\sqrt{x}} y e^{x^{2}} d y d x
$$

ANSWER: $\frac{e^{81}-1}{4}$
6. HINT: area $=\int_{0}^{\pi / 2} \int_{2 \cos \theta}^{1+\cos \theta} r d r d \theta$.

ANSWER: $1-\frac{\pi}{8}$
7. (a) ANSWER: $T_{3}(x)=1+2(x-2)+2(x-2)^{2}+\frac{4}{3}(x-2)^{3}$
(b) ANSWER: $\left|f(x)-T_{3}(x)\right| \leq \frac{16 e^{2}}{24}$
8. (a) ANSWER: $\cos \left(2 x^{3}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} 2^{2 k} x^{6 k}$
(b) ANSWER: 0.7656
(a) ANSWER: $\frac{1}{1+4 x}-\frac{1}{6 x-3}=\sum_{k=0}^{\infty}\left[(-1)^{k} 4^{k}+\frac{2^{k}}{3}\right] x^{k}$
(b) ANSWER: $\frac{4}{3}-\frac{10}{3} x+\frac{52}{3} x^{2}$
(c) ANSWER: $I=\left(-\frac{1}{4}, \frac{1}{4}\right)$

