Your Name

Your Signature
\square
Student ID \#

Professor's Name

TA's Name
\square

- CHECK that your exam contains 9 problems.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a scientific calculator with no graphing, programming, or calculus capabilities. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	10	
3	12	
4	12	
5	12	

Problem	Total Points	Score
6	8	
7	10	
8	12	
9	12	
Total	100	

1. (12 points) Let ℓ be the line through $(8,-4,7)$ and $(20,2,3)$.

Let P be the plane through $(5,3,0),(4,-1,6)$, and $(6,3,1)$.
(a) Where do the line ℓ and the plane P intersect?
(b) Let θ be the angle between the line ℓ and a normal vector to the plane P. Find $|\cos \theta|$.
2. (10 points) Identify each statement as true or false. You do not need to offer any explanation.
(a) $\mathbf{T} \quad \mathbf{F} \quad$ For any two non-zero vectors \mathbf{a} and \mathbf{b}, it is always true that $\operatorname{comp}_{\mathbf{a}} \mathbf{b} \leq|\mathbf{b}|$.
(b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ The traces of the surface $3 x-y^{2}+2 z^{2}=1$ parallel to the $y z$-plane are parabolas.
(c) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $\mathbf{a}=\langle 1,-1,5\rangle$ and $\mathbf{b}=\langle 2,4,0\rangle$, then $\mathbf{a} \times \mathbf{b}=\langle 20,-10,-6\rangle$.
(d) $\mathbf{T} \quad \mathbf{F} \quad$ If \mathbf{a} and \mathbf{b} are non-zero and $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{a}|$, then \mathbf{a} and \mathbf{b} are orthogonal.
(e) $\mathbf{T} \quad \mathbf{F} \quad$ For any two vectors \mathbf{a} and \mathbf{b}, it is always true that $|\mathbf{a}+\mathbf{b}| \geq|\mathbf{a}|$.
3. (12 points) Consider the polar curve (ellipse) $r=\frac{3}{2+\cos \theta}$.
(a) Find the equation in $x y$-coordinates of the line tangent to the curve at $\theta=\frac{\pi}{2}$.
(b) Find all points (x, y) on the curve at which the tangent line is vertical.
4. (12 points) A particle is moving along a helix $\mathbf{r}(t)=\langle\sin t, \cos t, 2 t\rangle$.
(a) Find the distance traveled by the particle from $t=0$ to $t=3$.
(b) Find an equation for the osculating plane at $t=0$.
(c) Find the curvature of this helix.
(d) Find the tangential component (speed-changing part) and normal component (directionchanging part) of the acceleration.
5. (12 points)
(a) Let $D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4, x \geq 0\right\}$. Calculate the integral

$$
\iint_{D} x \sin \left(\left(x^{2}+y^{2}\right)^{\frac{3}{2}}\right) \cos \left(\left(x^{2}+y^{2}\right)^{\frac{3}{2}}\right) d A
$$

Give an exact answer.
(b) Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt[3]{x}}^{1} \sin (x / y) d y d x
$$

6. (8 points) Find the tangent plane to the surface defined by the equation

$$
x^{3}+y^{3}+z^{3}+x y z=0
$$

at the point $(1,0,-1)$.
7. (10 points) Let S be the surface defined by the equation

$$
x y z=2 .
$$

Find all points that lie on the surface S that yield a local minimum of the function

$$
f(x, y, z)=x^{2}+y^{2}+2 z^{2} .
$$

8. (12 points) Let $F(x)=\int_{0}^{x} \frac{t}{8+t^{3}} \mathrm{~d} t$.
(a) Find the Taylor series for the function $F(x)$ based at $b=0$.
(b) Find the open interval on which the series in part (a) converges.
(c) Find the value of $F^{(11)}(0)$ (the eleventh derivative of F at 0). Give an exact answer.
9. (12 points) Consider the function $f(x)=x \ln (x-2)$.
(a) Find the second Taylor polynomial $T_{2}(x)$ based at $b=3$.
(b) Use the second Taylor polynomial to approximate $f(3.1)$.
(c) Use Taylor's inequality to find an upper bound for the error of your approximation is part (b).
