Your Name

Your Signature
\square

Student ID \#

Professor's Name

Quiz Section | | |
| :--- | :--- |

\square

- CHECK that your exam contains 9 problems on 9 pages.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	10	
3	12	
4	12	
5	12	

Problem	Total Points	Score
6	10	
7	10	
8	12	
9	10	
Total	100	

1. (12 points) Let P be the plane that goes through the points $A(1,3,2), B(2,3,0)$, and $C(0,5,3)$. Let ℓ be the line through the point $Q(1,2,0)$ and parallel to the line $x=5, y=3-t, z=6+2 t$. Find the (x, y, z) point of intersection of the line ℓ and the plane P.
2. (10 points) At time $t=0$, a small object is thrown. The acceleration is given by

$$
\mathbf{a}(t)=\left\langle 2 e^{-t}, 0,-10\right\rangle
$$

The initial velocity and positions are by $\mathbf{v}(0)=\langle 0,3,10\rangle$ and $\mathbf{r}(0)=\langle 0,0,0\rangle$, respectively. Find the point (x, y, z) at the time $t>0$ at which the object intersects the $x y$-plane.
3. (12 points) Let $z=f(x, y)$ be a function determined by the equation

$$
-z+e^{x y z-2}+(x-1) y=0
$$

(a) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(x, y, z)=(1,2,1)$.
(b) Use linear approximation to estimate the value of $f(1.01,1.99)$.
4. (12 points) Find two points on the surface

$$
(z-1)^{2}=x^{2}-x y+y^{2}+1
$$

that are closest to the point $(5,-5,1)$.
5. (12 points) Set up and evaluate a double integral in polar coordinates to calculate the area enclosed by the curve $r=2+\sin (3 \theta)$.
6. (10 points) Let R be the region in the plane bounded by the curves $y=3-x^{2}$ and $y=2 x$. Compute

$$
\iint_{R} 4 x d A
$$

7. (10 points) Evaluate the following integral.

$$
\int_{0}^{2} \int_{y^{2}}^{4} y \sin \left(x^{2}\right) d x d y
$$

8. (12 points)
(a) Find the Taylor series for $g(x)=\frac{1}{3+4 x}$ based at $b=0$.

Give your answer using sigma notation and list the first three non-zero terms.
(b) Find the Taylor series for $h(x)=\ln (3+4 x)$ based at $b=0$.

Give your answer using sigma notation and list the first four non-zero terms.
(c) Give the largest open interval on which the series you found in part (b) converges.
9. (10 points) Let $T_{n}(x)$ be the $n^{\text {th }}$ Taylor polynomial for $f(x)=e^{3 x}$ based at $b=0$. Find a value of n such that

$$
\left|f(x)-T_{n}(x)\right|<0.01
$$

for all x in the interval $\left[-\frac{1}{3}, \frac{1}{3}\right]$.
As always, show all work and justify your answer.

