1. $(x, y, z)=\left(1, \frac{1}{3}, \frac{10}{3}\right)$
2. $(x, y, z)=\left(2 e^{-2}+2,6,0\right)$
3. (a) at $(1,2,1), \frac{\partial z}{\partial x}=-4$ and $\frac{\partial z}{\partial y}=-1$
(b) $f(1.01,1.99) \approx-4(1.01-1)-(1.99-2)+1=0.97$
4. $(2,-2,1+\sqrt{13})$ and $(2,-2,1-\sqrt{13})$
5. $\frac{9 \pi}{2}$
6. $-\frac{128}{3}$
7. $\frac{1}{4}-\frac{1}{4} \cos (16)$
8. (a) $g(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} 4^{k} x^{k}}{3^{k+1}}=\frac{1}{3}-\frac{4 x}{3^{2}}+\frac{4^{2} x^{2}}{3^{3}}+\ldots$
(b) $h(x)=\ln (3)+\sum_{k=0}^{\infty} \frac{(-1)^{k} 4^{k+1} x^{k+1}}{3^{k+1}(k+1)}=\ln (3)+\frac{4 x}{3}-\frac{4^{2} x^{2}}{3^{2}(2)}+\frac{4^{3} x^{3}}{3^{3}(3)}-\ldots$
(c) $\left(-\frac{3}{4}, \frac{3}{4}\right)$
9. For $k=0,1,2, \ldots, f^{(k)}(x)=3^{k} e^{3 x}$. So, for all t in the interval $\left[-\frac{1}{3}, \frac{1}{3}\right]$,

$$
\left|f^{(n+1)}(t)\right|=\left|3^{n+1} e^{3 t}\right| \leq 3^{n+1} e<3^{n+2}
$$

This means that, for all x in the interval $\left[-\frac{1}{3}, \frac{1}{3}\right]$,

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{3^{n+2}}{(n+1)!}|x|^{n+1} \leq \frac{3^{n+1}}{(n+1)!} \cdot \frac{1}{3^{n+1}}=\frac{3}{(n+1)!}
$$

We therefore need n so that $\frac{3}{(n+1)!}<\frac{1}{100}$. $n=5$ is sufficient.

