Your Name

Student ID \#

Professor's Name

Your Signature
\square

TA's Name

- CHECK that your exam contains 8 problems on 8 pages.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	10	
2	13	
3	15	
4	14	
5	12	

Problem	Total Points	Score
6	10	
7	12	
8	14	
Total	100	

1. (10 points) Each of the following multiple choice problems has one correct answer. Circle it. You do not need to show any reasoning.
(a) Suppose $\mathbf{a} \neq \mathbf{0}$ and $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\mathbf{a} \times \mathbf{b}$. Then...
(i) $\mathbf{b}=\mathbf{a}$.
(ii) $\mathbf{b}=-\mathbf{a}$.
(iii) $\mathbf{b}=\mathbf{0}$.
(iv) \mathbf{b} is orthogonal to \mathbf{a}, but $\mathbf{b} \neq \mathbf{0}$.
(b) Let \mathcal{P} be the plane through $(0,0,0),(1,1,2)$, and $(2,0,0)$. Then \mathcal{P} also contains...
(i) $(1,2,4)$.
(ii) $(1,4,2)$.
(iii) $(2,1,4)$.
(iv) $(2,4,1)$.
(c) Let ℓ be the line $\mathbf{r}(t)=\langle 4 t, 2 t, 2+t\rangle$ and let \mathcal{P} be the plane $x-3 y+2 z=4$. Then ℓ is...
(i) parallel to \mathcal{P}.
(ii) orthogonal to \mathcal{P}.
(iii) contained in \mathcal{P}. (iv) none of these.
(d) Suppose \mathcal{S} is the set of points P such that the distance from P to the z-axis is 1 . Then \mathcal{S} is...
(i) two planes.
(ii) a cone.
(iii) a circular paraboloid.
(iv) a cylinder.
(e) Let $\mathbf{T}(t)$ be the unit tangent vector for $\mathbf{r}(t)$, and suppose $\left|\mathbf{r}^{\prime}(0)\right|=\frac{1}{2}$. Then...
(i) $\mathbf{T}(0)=2 \mathbf{r}^{\prime}(0)$.
(ii) $\mathbf{T}(0)=\frac{1}{2} \mathbf{r}^{\prime}(0)$.
(iii) $\mathbf{T}(0)=\mathbf{r}^{\prime}(0)$.
(iv) $\mathbf{T}(0)=\mathbf{0}$.
2. (13 points) Let $\mathbf{r}(t)=\langle t \sin (\pi t), t \cos (\pi t), 4-t\rangle$ and let \mathcal{S} be the surface $x^{2}+y^{2}=z^{2}$.
(a) Find the point where $\mathbf{r}(t)$ intersects the surface \mathcal{S}.
(b) Write parametric equations for the tangent line to $\mathbf{r}(t)$ at $t=1$.
(c) Find the curvature of $\mathbf{r}(t)$ at $t=0$.
3. (15 points)
(a) Find the second partial $f_{x y}$ for $f(x, y)=\ln (y)+y e^{x^{2} y}$.
(b) Find $\frac{\partial z}{\partial x}$ for $z^{4}-z=x \sin (y)+\frac{1}{y}+x^{y}$.
(c) Use the linear approximation to $g(x, y)=\sqrt{10-x^{2}-2 y^{2}}$ at $(2,1)$ to approximate the value of $g(2.01,0.95)$.
4. (14 points) Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane $3 x+2 y+z=12$.
In order to receive full credit, you should show some work and/or write a couple of sentences explaining why your answer is indeed the maximum.
5. (12 points) Let R be the region in the $x y$-plane bounded by the curve $y=x^{1 / 3}$ and the line $y=x$ in the first quadrant. Compute the double integral

$$
\iint_{R} \cos \left(y^{2}\right) d A
$$

6. (10 points) Find the volume of the solid that is under the surface

$$
z=e^{x^{2}+y^{2}}
$$

and above the region

$$
R=\left\{(x, y) \mid x \geq 0, x^{2}+y^{2} \leq 4\right\}
$$

7. (12 points) Let $f(x)=x^{\frac{1}{3}}$.
(a) Find the second Taylor polynomial for $f(x)$ based at $b=8$.
(b) Use Taylor's inequality to find an upper bound for the error $\left|f(x)-T_{2}(x)\right|$ on the interval [7, 9].
(c) Use you answer in part (a) to estimate the cube root of 9. Give your answer as a fraction or a decimal rounded to three digits after the decimal.
8. (14 points) Write down the Taylor series for the following functions.

For each,

- write your answer in sigma notation;
- write out the first three nonzero terms explicitly; and
- give the interval on which it converges.
(a) $f(x)=\frac{2}{4 x^{2}+9}$ based at $b=0$.
(b) $f(x)=\frac{\cos \left(2 x^{2}\right)-1}{5 x^{4}}$ based at $b=0$.

