1. (10 points) Each of the following multiple choice problems has one correct answer. Circle it. You do not need to show any reasoning.
(a) Suppose $\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{1}{2}|\mathbf{b}|$. Then the angle between \mathbf{a} and \mathbf{b} is...
(i) 30°.

(ii) 45°.
(iii) 60°.
$|t| \cos \theta=\frac{1}{2}|5| \longrightarrow \theta=60^{\circ}$
(iv) 90°.
(b) Suppose \mathcal{S} is the set of points P such that the distance from P to the x-axis is equal to 3. Then \mathcal{S} is...
(i) a plane.
(ii) a cylinder.
(iii) a sphere.
(iv) a cone.

$$
\sqrt{y^{2}+z^{2}}=3 \rightarrow y^{2}+z^{2}=9
$$

(c) The surface $z=x^{2}+2 x y$ is tangent to the plane $z=6 x+4 y-8$ at the point...
(i) $(-2,3,-8) \downarrow$
(ii) $(0,2,0)$.
(iii) $(2,1,8)$.

(iv) $(4,0,16)$.
(d) The value of $\int_{2}^{5} \int_{3}^{5}\left(5+\sin ^{2}\left(y x^{2}+y^{3}\right)\right) d y d x$ is between...
(i) 0 and 10
(ii) 10 and 20 .
(iii) 20 and 30 .
(iv) 30 and 40.
$5 \leq 5+\sin ^{2}\left(y x^{2}+y^{3}\right) \leq 6$ \leq base of solid is $3 \times 2 \rightarrow$ area 6
(e) The Taylor series for $f(x)=\frac{1}{2-x^{2}}$ centered at $b=0$ converges on the interval...
(i) $(-1,1)$.
(ii) $(-2,2)$.
(iii) $(-4,4)$.
$\frac{1}{1-x}$ converges for $-1<x<1$
$\frac{1}{1-\frac{x^{x}}{3}}$ converge for $-1<\frac{x^{2}}{2}<1 \rightarrow \sqrt{2}<x<\sqrt{2}$
$\frac{1}{2-x^{2}}$ also converge for $-\sqrt{2}<x<\sqrt{2}$
(iv) $(-\sqrt{2}, \sqrt{2})$.
2. (12 pts) Let L be the line of intersection of the two planes

$$
x+y+2 z=c \quad \text { and } \quad x-c y-c z=-1
$$

where c is some real number. Find a value of c for which L is perpendicular to the plane $3 x-y-z=0$.

The direction vector of L is $\langle 1,1,2\rangle \times\langle 1,-c,-c\rangle$

$$
=\langle c, c+2,-c-1\rangle
$$

We want this to be parallel to $\langle 3,-1,-1\rangle$.

$$
\text { So } \frac{c}{3}=\frac{c+2}{-1}=\frac{-c-1}{-1}
$$

3. (12 pts) Find the curvature of the ellipse

$$
x=3 \cos (t), \quad y=4 \sin (t), \quad z=1
$$

at the points $\underbrace{(3,0,1)}_{\boldsymbol{t}=0}$ and $\underbrace{(0,4,1)}_{\boldsymbol{t}=\frac{\pi}{2}}$.

$$
\begin{aligned}
& \vec{r}(t)=\langle 3 \cos (t), 4 \sin (t), 1\rangle \\
& \vec{r}^{\prime}(t)=\langle-3 \sin (t), 4 \cos (t), 0\rangle \\
& \vec{r}^{\prime \prime}(t)=\langle-3 \cos (t),-4 \sin (t), 0\rangle \\
& t=0: \vec{r}^{\prime}(0)=\langle 0,4,0\rangle \quad \vec{r}^{\prime \prime}(0)=\langle-3,0,0\rangle \quad r^{\prime}(0) \times r^{\prime \prime}(0)=\langle 0,0,12\rangle \\
& \rightarrow K=\frac{12}{4^{3}}=\frac{3}{16}
\end{aligned}
$$

4. (14 pts) Find and classify all the critical points of $f(x, y)=4 x y-3 y+\frac{1}{x}-\frac{1}{4} \ln (y)$.

Clearly show your work in using the second derivative test and label your answers.

$$
\begin{gathered}
f_{x}(x, y)=4 y-\frac{1}{x^{2}}=0 \rightarrow 4 y=\frac{1}{x^{2}} \\
f_{y}(x, y)=4 x-3-\frac{1}{4 y}=0 \\
4 x-3-x^{2}=0 \\
-(x-1)(x-3)=0 \\
\text { or } \sum_{x=3}^{x=1} \begin{array}{l}
y=\frac{1}{4} \\
y=\frac{1}{36}
\end{array} \quad \text { so }\left(1, \frac{1}{4}\right) \&\left(3, \frac{1}{36}\right) \\
f_{x x}(x, y)=\frac{2}{x^{3}} \quad f_{y y}(x, y)=\frac{1}{4 y^{2}} \quad f_{x y}(x y)=4 \\
\text { A+ }\left(1, \frac{1}{9}\right): D=(2)(4)-4^{2}=-8<0 \\
\left(1, \frac{1}{4}\right) \text { gives a saddle point } \\
\text { A+ }\left(3, \frac{1}{36}\right): D=\left(\frac{2}{27}\right)(324)-4^{2}=8>0 \\
\text { a } 1 \\
\text { positive }
\end{gathered}
$$

5. (14 pts) Compute the volume of the solid between the surface $x^{2}+y+z=4$ and the $x y$-plane above the first quadrant.
Intersection of $x^{2}+y+z=4$ and first quadrant in $x y$-plane:

$$
z=4-y-x^{2}
$$

$$
\left.=\int_{0}^{2}\left(4 y-\frac{1}{2} y^{2}-y x^{2}\right)\right]_{y=0}^{y=4-x^{2}}
$$

$$
=\int_{0}^{2}\left(4\left(4-x^{2}\right)-\frac{1}{2}\left(4-x^{2}\right)^{2}-\left(4-x^{2}\right) x^{2}\right) d x
$$

$$
=\int_{0}^{2}\left(\frac{1}{2} x^{4}-4 x^{2}+8\right) d x
$$

$$
\left.=\left(\frac{1}{10} x^{5}-\frac{4}{3} x^{3}+8 x\right)\right]_{0}^{2}=\frac{32}{10}-\frac{32}{3}+16
$$

$$
=\frac{128}{15}
$$

6. (12 pts) Compute

$$
\iint_{R} e^{-\left(x^{2}+y^{2}\right)} d A
$$

where $R=\left\{(x, y): x^{2}+y^{2} \leq 9\right\}$.

$$
\begin{aligned}
& u=-r^{2} \\
& d u=-2 r d r \\
&\left.\int_{0}^{2 \pi}\left(\int_{0}^{-9} \frac{-1}{2} e^{u} d u\right) d \theta=\int_{0}^{2 \pi}\left(\frac{-1}{2} e^{u}\right)\right]_{u=0}^{u=-9} d \theta \\
&=\int_{0}^{2 \pi}\left(\frac{-1}{2} e^{-9}+\frac{1}{2}\right) d \theta \\
&=\pi\left(1-e^{-9}\right)
\end{aligned}
$$

7. (12 pts) Let $f(x)=1+x+x^{2}+3 x^{3}$.
(a) Find the second-degree Taylor polynomial, $T_{2}(x)$, for $f(x)$ based at $b=1$.

$$
\begin{array}{ll}
f(x)=1+x+x^{2}+3 x^{3} & f(1)=6 \\
f^{\prime}(x)=1+2 x+9 x^{2} & f^{\prime}(1)=12 \\
f^{\prime \prime}(x)=2+18 x & f^{\prime \prime}(1)=20 \\
T_{2}(x)=6+12(x-1)+10(x-1)^{2}
\end{array}
$$

$[1-a, 1+a]$
(b) Determine an interval around $b=1$ on which

$$
\begin{array}{r}
f^{\prime \prime \prime \prime}(x)=18=M \quad\left|T_{2}(x)-f(x)\right|<0.024 \\
\left|T_{2}(x)-f(x)\right| \leq \frac{1}{6}(18)|a|^{3}<0.024 \\
|a|^{3}<0.008 \\
|a|<0.2
\end{array}
$$

So $a=0.1$ (for example) works:

$$
[0.9,1.1]
$$

8. (14 pts) Let $f(x)=\frac{x^{3}}{1+x^{4}}$.
(a) Find the Taylor series for $f(x)$ based at zero. Express your answer using sigma notation.

$$
\frac{x^{3}}{1+x^{4}}=\sum_{k=0}^{\infty}(-1)^{k} x^{4 k+3}
$$

(b) Use the Taylor series you found in (a) to find the Taylor series for

$$
g(x)=x^{2} \ln \left(1+x^{4}\right)
$$

Express your answer using sigma notation.

$$
\begin{aligned}
& \text { Note: } \int \frac{x^{3}}{1+x^{4}} d x=\frac{1}{4} \ln \left|1+x^{4}\right|+C \\
& n=1+x^{4} \\
& d u=4 x^{3} d u \\
& \text { So } \ln \left(1+x^{4}\right)=4 \sum_{k=0}^{\infty} \int(-1)^{k} x^{4 k+3} d x=\sum_{k=0}^{\infty} \frac{(-1)^{k} 4 x^{4 k+4}}{4 k+4} \\
& \ln \left(1+x^{4}\right)=\underbrace{n o+c, \text { because } \ln \left(1+0^{4}\right)=0}_{\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{4 h+4}}{k+1}} \\
& x^{2} \ln \left(1+x^{4}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{4 k+6}}{k+1}
\end{aligned}
$$

