1. HINT: The curves intersect when $t=1$ and $s=2$ and the tangent vectors at the point of intersection are $\mathbf{r}^{\prime}(1)=\langle 1,2,3\rangle$ and $\mathbf{r}^{\prime}(s)=\langle 1,5,8\rangle$.
ANSWER: $\theta=\cos ^{-1}\left(\frac{\sqrt{35}}{6}\right)$
2. (a) ANSWER: $\mathbf{T}(t)=\left\langle-\frac{5}{13} \sin t,-\frac{12}{13} \sin t, \cos t\right\rangle$
(b) ANSWER: $\mathbf{N}(t)=\left\langle-\frac{5}{13} \cos t,-\frac{12}{13} \cos t,-\sin t\right\rangle$
(c) ANSWER: $\mathbf{B}(t)=\left\langle\frac{12}{13},-\frac{5}{13}, 0\right\rangle$
(d) ANSWER: $\kappa(t)=\frac{1}{13}$
3. (a) F; (b) F; (c) F; (d) T; (e) T; (f) T; (g) T; (h) F; (i) F; (j) F
4. (a) ANSWER: (answers may vary) $\ell_{1}: x=4 t, y=3-2 t, z=4$
(b) ANSWER: (answers may vary) $\ell_{2}: x=3+2 t, y=-1-t, z=5$.

To verify that the two lines are parallel, note that the direction vector for ℓ_{1} is $\vec{v}_{1}=$ $\langle 4,-2,0\rangle$ and the direction vector for ℓ_{2} is $\vec{v}_{2}=\langle 2,-1,0\rangle$ and $\vec{v}_{1}=2 \vec{v}_{2}$.
(c) ANSWER: $x+2 y+5 z=26$
5. (a) HINT: Compute $f_{x}(100,100)$.

ANSWER: You will be ascending at an angle of $\tan ^{-1}\left(\frac{1}{10}\right)$ from the horizontal.
(b) HINT: Compute $f_{y}(100,100)$.

ANSWER: You will be descending at an angle of $\tan ^{-1}\left(\frac{3}{10}\right)$ from the horizontal. (Would also accept $\tan ^{-1}\left(-\frac{3}{10}\right)$.)
(c) ANSWER: $z=990+\frac{1}{10}(x-100)-\frac{3}{10}(y-100)$
(d) ANSWER: $f(100,102) \approx 990+\frac{1}{10}(100-100)-\frac{3}{10}(102-100)=989.4$ feet
6. HINT: Let $P(x, y, z)$ be a point on the hyperbololoid. Then the coordinates of P satisfy the equation $z^{2}=1+2 x^{2}+y^{2}$. The distance from P to Q is then

$$
\sqrt{(x-0)^{2}+(y-1)^{2}+(z-0)^{2}}=\sqrt{x^{2}+(y-1)^{2}+z^{2}}=\sqrt{x^{2}+(y-1)^{2}+\left(1+2 x^{2}+y^{2}\right)} .
$$

The distance will be smallest when the expression under the square root is minimized. So, let

$$
f(x, y)=x^{2}+(y-1)^{2}+\left(1+2 x^{2}+y^{2}\right)
$$

(the square of the distance from P to Q) and find the point (x, y) that minimizes f.
ANSWER: $\left(0, \frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)$
7. (a) ANSWER: $T_{2}(x)=1+3(x-1)+\frac{7}{2}(x-1)^{2}$
(b) ANSWER: $f(0.9) \approx T_{2}(0.9)=1+3(-0.1)+\frac{7}{2}(-0.1)^{2}=0.735$
(c) HINT: $f^{\prime \prime \prime}(x)=e^{x-1}\left(x^{2}+6 x+6\right)$, which is increasing on the interval $I=[0.9,1]$. So, for all x in $I,\left|f^{\prime \prime \prime}(x)\right| \leq f^{\prime \prime \prime}(1)=13$.
ANSWER: $\left|f(x)-T_{2}(x)\right| \leq \frac{13}{3!}|0.9-1|^{3} \approx 0.0022$ (would accept a larger bound)
8. (a) ANSWER: $f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!(2 k+1)} x^{2 k+1}$
(b) ANSWER: $x-\frac{1}{3!3} x^{3}+\frac{1}{5!5} x^{5}-\ldots$
(c) ANSWER: $(-\infty, \infty)$
9. HINT: The region D is:

D is a polar rectangle: $\left\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \frac{\pi}{2}\right\}$.
The area of D is $\frac{3 \pi}{4}$.
Then, the average value of f over D is:

$$
\frac{1}{\text { area of } D} \iint_{D} e^{-\left(x^{2}+y^{2}\right)} d A=\frac{4}{3 \pi} \int_{0}^{\pi / 2} \int_{1}^{2} e^{-r^{2}} r d r d \theta .
$$

ANSWER: $f_{\text {ave }}=\frac{e^{-1}-e^{-4}}{3}$

