FINAL EXAM ANSWERS

MATH 126 WINTER 2012

1. (a) T ; (b) F; (c) T ; (d) T ; (e) T ; (f) F ; (g) F ; (h) T ; (i) F ; (j) T
2. (a) No.
(b) $2 x-y=0$
3. (a) $\kappa(t)=\frac{\sqrt{5}}{\left(1+4 \sin ^{2} t\right)^{3 / 2}}$
(b) $\mathbf{r}(t)=\langle\sin t, 1+\cos t, 2+2 \cos t\rangle$
4. The only critical point is $(e, 1)$. It is a saddle point.
5. $x=1+4 t, y=1+5 t, z=-1+5 t$
6. The shortest distance is $\sqrt{\frac{15}{2}}$.
7. 44π
8. (a) $T_{3}(x)=-2+(x-1)+2(x-1)^{2}-\frac{1}{3}(x-1)^{3}$
(b) Many correct answers. Two of the many possibilities:
I. $\left|f(x)-T_{3}(x)\right| \leq \frac{a^{4}}{6(1-a)^{3}}$.
II. $\left|f(x)-T_{3}(x)\right| \leq \frac{8}{3} a^{4}$. (Uses the fact that $a \leq \frac{1}{2}$.)
(c) Many correct answers. Two possibilities based on the answers in (b).
I. Using the fact that $0<1-a<1$, show that $\left|f(x)-T_{3}(x)\right| \leq \frac{a^{4}}{6(1-a)^{3}}<\frac{a^{4}}{6(1-a)^{4}}$. Then any $a<0.2177$ will work.
II. Using the error bound $\left|f(x)-T_{3}(x)\right| \leq \frac{8}{3} a^{4}$, any $a \leq 0.139$ will work.
9. (a) $\sum_{k=0}^{\infty}\left((-1)^{k}+\frac{(-2)^{k}}{k!}\right) x^{2 k}$
(b) $(-1,1)$
(c) 1.6000
