FINAL EXAM ANSWERS MATH 126 WINTER 2012

- 1. (a) T; (b) F; (c) T; (d) T; (e) T; (f) F; (g) F; (h) T; (i) F; (j) T
- 2. (a) No.
 - (b) 2x y = 0

3. (a)
$$\kappa(t) = \frac{\sqrt{5}}{(1+4\sin^2 t)^{3/2}}$$

(b) $\mathbf{r}(t) = \langle \sin t, 1 + \cos t, 2 + 2\cos t \rangle$

4. The only critical point is (e, 1). It is a saddle point.

5.
$$x = 1 + 4t, y = 1 + 5t, z = -1 + 5t$$

6. The shortest distance is $\sqrt{\frac{15}{2}}$.

7. 44π

- 8. (a) $T_3(x) = -2 + (x-1) + 2(x-1)^2 \frac{1}{3}(x-1)^3$
 - (b) Many correct answers. Two of the many possibilities:

I.
$$|f(x) - T_3(x)| \le \frac{a^4}{6(1-a)^3}$$
.
II. $|f(x) - T_3(x)| \le \frac{8}{3}a^4$. (Uses the fact that $a \le \frac{1}{2}$.)

- (c) Many correct answers. Two possibilities based on the answers in (b).
 - I. Using the fact that 0 < 1-a < 1, show that $|f(x) T_3(x)| \le \frac{a^4}{6(1-a)^3} < \frac{a^4}{6(1-a)^4}$. Then any a < 0.2177 will work.
 - II. Using the error bound $|f(x) T_3(x)| \le \frac{8}{3}a^4$, any $a \le 0.139$ will work.

9. (a)
$$\sum_{k=0}^{\infty} \left((-1)^k + \frac{(-2)^k}{k!} \right) x^{2k}$$

(b) (-1,1)
(c) 1.6000