Math 126

Your Name

Student ID

Professor's Name

	Ç	Quiz Section	
TA's Name			

- This exam contains 10 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.
- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes and a non-graphing, non-programmable scientific calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.

• Place a box around **YOUR FINAL ANSWER** to each question.

- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	8	
2	10	
3	10	
4	12	
5	10	

Problem	Total Points	Score
6	10	
7	6	
8	10	
9	12	
10	12	
Total	100	

- 1. (8 points) Indicate whether each of the following is true (T) or false (F). Circle your answer. No justification for your answer is needed.
 - (a) **T F** Two planes that are not parallel must intersect in space.
 - (b) **T F** Two lines that are not parallel must intersect in space.
 - (c) **T F** For any two vectors **v** and **w**, we always have $\mathbf{v} \times \mathbf{w} = \mathbf{w} \times \mathbf{v}$.
 - (d) **T F** If the curvature of a curve in space is constant, then the curve must be a circle.

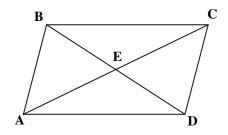
(e) **T F** For any function
$$f(x, y)$$
,

$$\int_0^3 \int_{3x}^3 f(x, y) \, dy \, dx = \int_0^3 \int_{3y}^3 f(x, y) \, dx \, dy.$$

- (f) **T F** For all real values of x, the function $\frac{1}{1-x}$ is equal to its Taylor series based at b = 0.
- (g) **T F** Every function f(x) has a Taylor series based at b = 0.
- (h) **T F** If f(x, y) is a nonzero continuous function over a region R, then

$$\iint_{R} |f(x,y) - 1| \, dA \le \iint_{R} (|f(x,y)| - 1) \, dA.$$

2. (10 points) In the parallelogram below, we know the points A(2, 1, 2) and B(4, 2, 3) and the vector $\overrightarrow{AD} = \langle 3, 0, 4 \rangle$.



(a) Compute the area of the parallelogram.

(b) Find the coordinates of the intersection point E of the two diagonals.

- 3. (10 points) Given the point P(2, 4, 0) and the line *l* given by parametric equations x = 1 2t, y = 2 t, z = 3t, answer the following.
 - (a) Find the equation of the plane that contains the point P and the line l.

(b) Find the parametric equations of the line through the point P that intersects and is perpendicular to the line l.

4. (12 points) Consider the vector function

 $\mathbf{r}(t) = \langle 1 + 13\sin t, 12\cos t, 1 - 5\cos t \rangle.$

(a) Find the speed and the normal and tangential components of acceleration at time t of the particle whose position is given by $\mathbf{r}(t)$.

(b) Compute the curvature at time t.

(c) Find the equation of the line tangent to the curve at $t = \pi$.

- 5. (10 points) Consider the function $f(x, y) = \sin(x)\cos(y)$.
 - (a) Let $R = \{(x, y) : 0 \le x \le \pi \text{ and } 0 \le y \le \pi\}$. Find all critical points of f that lie in the region R and classify them according to type (max, min, saddle, other).

(b) Let D be the triangular region bounded by the lines $x = \frac{\pi}{2}$, $y = \frac{\pi}{2}$, and $y = \frac{\pi}{2} - x$. Find the locations of the absolute max and min of f on D.

(You may find the identity $\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$ useful.)

- 6. (10 points) Let $f(x, y) = x^y + y^x$.
 - (a) Calculate the partial derivatives f_x and f_y .

(b) Find the tangent plane to the surface z = f(x, y) in \mathbb{R}^3 at the point (1, 1, 2).

(c) Use linear approximation to estimate the value of f(1.01, 0.99).

7. (6 points) Consider the surface S in \mathbb{R}^3 given by

 $x^3 + y^3 + z^3 = 0.$

(a) Find the tangent plane to S at the point (1, 0, -1).

(b) Describe the shape of the intersection of S and the plane z = 0.

8. (10 points) Find the center of mass of the lamina that occupies the region

$$D = \{(x, y) : 4 \le x^2 + y^2 \le 16 \text{ and } y \ge |x|\}$$

with density function $\rho(x, y) = y + e^{\sqrt{x^2 + y^2}}$.

- 9. (12 points) Consider the function $f(x) = \ln(x^2 + 3x)$.
 - (a) Find the Taylor series for f(x) based at b = 1. Write your answer using sigma notation.

(b) Find the Taylor series based at b = 1 for

$$F(x) = \int_1^x f(t) \, dt.$$

Write your answer using sigma notation.

(c) Find the 5th Taylor polynomial of F(x) based at b = 1.

- 10. (12 points) Consider the function $f(x) = 2x x^2 + e^{2x^2 x}$.
 - (a) Find the second Taylor polynomial $T_2(x)$ for f(x) based at b = 0.

(b) Find an upper bound on the error $|T_2(x) - f(x)|$ on the interval [-1, 1].

(c) What is the smallest value of $|T_2(x) - f(x)|$ on the interval [-1, 1].