• This exam contains 10 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

• This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes and a non-graphing, non-programmable scientific calculator. Do not share notes or calculators.

• Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)

• In order to receive full credit, you must show all of your work.

• Place a box around YOUR FINAL ANSWER to each question.

• If you need more room, use the backs of the pages and indicate to the reader that you have done so.

• Raise your hand if you have a question.
1. (8 points) Indicate whether each of the following is true (T) or false (F). Circle your answer. No justification for your answer is needed.

(a) T F Two planes that are not parallel must intersect in space.

(b) T F Two lines that are not parallel must intersect in space.

(c) T F For any two vectors \mathbf{v} and \mathbf{w}, we always have $\mathbf{v} \times \mathbf{w} = \mathbf{w} \times \mathbf{v}$.

(d) T F If the curvature of a curve in space is constant, then the curve must be a circle.

(e) T F For any function $f(x, y)$,
$$\int_0^3 \int_{3x}^3 f(x, y) \, dy \, dx = \int_0^3 \int_{3y}^3 f(x, y) \, dx \, dy.$$

(f) T F For all real values of x, the function $\frac{1}{1-x}$ is equal to its Taylor series based at $b = 0$.

(g) T F Every function $f(x)$ has a Taylor series based at $b = 0$.

(h) T F If $f(x, y)$ is a nonzero continuous function over a region R, then
$$\iint_R |f(x, y) - 1| \, dA \leq \iint_R (|f(x, y)| - 1) \, dA.$$
2. (10 points) In the parallelogram below, we know the points $A(2, 1, 2)$ and $B(4, 2, 3)$ and the vector $\overrightarrow{AD} = (3, 0, 4)$.

(a) Compute the area of the parallelogram.

(b) Find the coordinates of the intersection point E of the two diagonals.
3. (10 points) Given the point $P(2, 4, 0)$ and the line l given by parametric equations $x = 1 - 2t,$ $y = 2 - t,$ $z = 3t,$ answer the following.

(a) Find the equation of the plane that contains the point P and the line $l.$

(b) Find the parametric equations of the line through the point P which is perpendicular to the line $l.$
4. (12 points) Consider the vector function

\[r(t) = (1 + 13 \sin t, 12 \cos t, 1 - 5 \cos t) \, . \]

(a) Find the speed and the normal and tangential components of acceleration at time \(t \) of the particle whose position is given by \(r(t) \).

(b) Compute the curvature at time \(t \).

(c) Find the equation of the line tangent to the curve at \(t = \pi \).
5. (10 points) Consider the function \(f(x, y) = \sin(x) \cos(y) \).

(a) Let \(R = \{(x, y) : 0 \leq x \leq \pi \text{ and } 0 \leq y \leq \pi \} \). Find all critical points of \(f \) that lie in the region \(R \) and classify them according to type (max, min, saddle, other).

(b) Let \(D \) be the triangular region bounded by the lines \(x = \frac{\pi}{2}, \ y = \frac{\pi}{2}, \) and \(y = \frac{\pi}{2} - x \). Find the locations of the absolute max and min of \(f \) on \(D \).

(You may find the identity \(\cos\left(\frac{\pi}{2} - x\right) = \sin(x) \) useful.)
6. (10 points) Let $f(x, y) = x^y + y^x$.

(a) Calculate the partial derivatives f_x and f_y.

(b) Find the tangent plane to the surface $z = f(x, y)$ in \mathbb{R}^3 at the point $(1, 1, 2)$.

(c) Use linear approximation to estimate the value of $f(1.01, 0.99)$.
7. (6 points) Consider the surface S in \mathbb{R}^3 given by

$$x^3 + y^3 + z^3 = 0.$$

(a) Find the tangent plane to S at the point $(1, 0, -1)$.

(b) Describe the shape of the intersection of S and the plane $z = 0$.
8. (10 points) Find the center of mass of the lamina that occupies the region

$$D = \{(x, y) : 4 \leq x^2 + y^2 \leq 16 \text{ and } y \geq |x|\}$$

with density function $\rho(x, y) = y + e^{\sqrt{x^2+y^2}}$.
9. (12 points) Consider the function \(f(x) = \ln(x^2 + 3x) \).

(a) Find the Taylor series for \(f(x) \) based at \(b = 1 \). Write your answer using sigma notation.

(b) Find the Taylor series based at \(b = 1 \) for

\[
F(x) = \int_1^x f(t) \, dt.
\]

Write your answer using sigma notation.

(c) Find the 5th Taylor polynomial of \(F(x) \) based at \(b = 1 \).
10. (12 points) Consider the function $f(x) = 2x - x^2 + e^{2x^2 - x}$.

(a) Find the second Taylor polynomial $T_2(x)$ for $f(x)$ based at $b = 0$.

(b) Find an upper bound on the error $|T_2(x) - f(x)|$ on the interval $[-1, 1]$.

(c) What is the smallest value of $|T_2(x) - f(x)|$ on the interval $[-1, 1]$.