Your Name

Student ID \#

Professor's Name

Your Signature
\square

TA's Name

- This exam contains 10 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a non-graphing, non-programmable scientific calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	8	
2	10	
3	10	
4	12	
5	10	

Problem	Total Points	Score
6	10	
7	6	
8	10	
9	12	
10	12	
Total	100	

1. (8 points) Indicate whether each of the following is true (T) or false (F). Circle your answer. No justification for your answer is needed.
(a) $\mathbf{T} \quad \mathbf{F} \quad$ Two planes that are not parallel must intersect in space.
(b) $\begin{array}{lll}\mathbf{T} & \mathbf{F} \quad \text { Two lines that are not parallel must intersect in space. }\end{array}$
(c) $\mathbf{T} \mathbf{F} \quad$ For any two vectors \mathbf{v} and \mathbf{w}, we always have $\mathbf{v} \times \mathbf{w}=\mathbf{w} \times \mathbf{v}$.
(d) $\mathbf{T} \quad \mathbf{F} \quad$ If the curvature of a curve in space is constant, then the curve must be a circle.
(e) $\mathbf{T} \quad \mathbf{F} \quad$ For any function $f(x, y)$,

$$
\int_{0}^{3} \int_{3 x}^{3} f(x, y) d y d x=\int_{0}^{3} \int_{3 y}^{3} f(x, y) d x d y
$$

(f) $\quad \mathbf{T} \quad \mathbf{F} \quad$ For all real values of x, the function $\frac{1}{1-x}$ is equal to its Taylor series based at $b=0$.
(g) $\quad \mathbf{T} \quad \mathbf{F} \quad$ Every function $f(x)$ has a Taylor series based at $b=0$.
(h) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $f(x, y)$ is a nonzero continuous function over a region R, then

$$
\iint_{R}|f(x, y)-1| d A \leq \iint_{R}(|f(x, y)|-1) d A
$$

2. (10 points) In the parallelogram below, we know the points $A(2,1,2)$ and $B(4,2,3)$ and the vector $\overrightarrow{A D}=\langle 3,0,4\rangle$.

(a) Compute the area of the parallelogram.
(b) Find the coordinates of the intersection point E of the two diagonals.
3. (10 points) Given the point $P(2,4,0)$ and the line l given by parametric equations $x=1-2 t$, $y=2-t, z=3 t$, answer the following.
(a) Find the equation of the plane that contains the point P and the line l.
(b) Find the parametric equations of the line through the point P that intersects and is perpendicular to the line l.
4. (12 points) Consider the vector function

$$
\mathbf{r}(t)=\langle 1+13 \sin t, 12 \cos t, 1-5 \cos t\rangle
$$

(a) Find the speed and the normal and tangential components of acceleration at time t of the particle whose position is given by $\mathbf{r}(t)$.
(b) Compute the curvature at time t.
(c) Find the equation of the line tangent to the curve at $t=\pi$.
5. (10 points) Consider the function $f(x, y)=\sin (x) \cos (y)$.
(a) Let $R=\{(x, y): 0 \leq x \leq \pi$ and $0 \leq y \leq \pi\}$. Find all critical points of f that lie in the region R and classify them according to type (max, min, saddle, other).
(b) Let D be the triangular region bounded by the lines $x=\frac{\pi}{2}, y=\frac{\pi}{2}$, and $y=\frac{\pi}{2}-x$. Find the locations of the absolute max and min of f on D.
(You may find the identity $\cos \left(\frac{\pi}{2}-x\right)=\sin (x)$ useful.)
6. (10 points) Let $f(x, y)=x^{y}+y^{x}$.
(a) Calculate the partial derivatives f_{x} and f_{y}.
(b) Find the tangent plane to the surface $z=f(x, y)$ in \mathbf{R}^{3} at the point $(1,1,2)$.
(c) Use linear approximation to estimate the value of $f(1.01,0.99)$.
7. (6 points) Consider the surface S in \mathbf{R}^{3} given by

$$
x^{3}+y^{3}+z^{3}=0 .
$$

(a) Find the tangent plane to S at the point $(1,0,-1)$.
(b) Describe the shape of the intersection of S and the plane $z=0$.
8. (10 points) Find the center of mass of the lamina that occupies the region

$$
D=\left\{(x, y): 4 \leq x^{2}+y^{2} \leq 16 \quad \text { and } \quad y \geq|x|\right\}
$$

with density function $\rho(x, y)=y+e^{\sqrt{x^{2}+y^{2}}}$.
9. (12 points) Consider the function $f(x)=\ln \left(x^{2}+3 x\right)$.
(a) Find the Taylor series for $f(x)$ based at $b=1$. Write your answer using sigma notation.
(b) Find the Taylor series based at $b=1$ for

$$
F(x)=\int_{1}^{x} f(t) d t
$$

Write your answer using sigma notation.
(c) Find the 5th Taylor polynomial of $F(x)$ based at $b=1$.
10. (12 points) Consider the function $f(x)=2 x-x^{2}+e^{2 x^{2}-x}$.
(a) Find the second Taylor polynomial $T_{2}(x)$ for $f(x)$ based at $b=0$.
(b) Find an upper bound on the error $\left|T_{2}(x)-f(x)\right|$ on the interval $[-1,1]$.
(c) What is the smallest value of $\left|T_{2}(x)-f(x)\right|$ on the interval $[-1,1]$.

