1. $x-2 y-4 z=-5$
2. (a) i. If $z=0$, then the trace is $x^{2}+b y^{2}=0$, which is a single point $(0,0)$. Otherwise, since $z^{2}>0$, the traces have the form $x^{2}+b y^{2}=d$, with $b, d>0$. These are all ellipses.
ii. If $z=0$, then the trace is $x^{2}+b y^{2}=0$, which is a pair of lines. Otherwise, since $z^{2}>0$, the traces have the form $x^{2}+b y^{2}=d$, where $b<0$ and $d>0$. These are all hyperbolas that do not intersect the x-axis.
(b) In order to contain the line, the equation $16 t^{2}+4 b t^{2}+c t^{2}=0$ must hold for all t, which means that $16+4 b+c=0$.
(c) The trace in question has equation $x^{2}+b y^{2}=16+4 b$. This is a circle precisely when $b=1$.
3. (a) The balloon hits the $x y$-plane at $t=3$. Speed at $t=3$ is $\sqrt{385}$.
(b) $t=\frac{138}{104}$
(c) $\mathrm{T} ; \mathrm{F} ; \mathrm{T}$
4. (a) $(-17,21,97)$
(b) 66°
5. $\left(\frac{8}{23}, \frac{2}{23},-\frac{28}{23}\right)$
6. $-\frac{1}{28}\left(e^{-2}-1\right)$
7. (a) $T_{1}(x)=T_{2}(x)=x$
(b) $A\left(\frac{1}{2}\right) \approx T_{2}\left(\frac{1}{2}\right)=\frac{1}{2}$
(c) One possible answer: error $\leq \frac{1}{24}$
8. (a) $f(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+2}}{(2 k+1)(2 k+2)}=\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{30} x^{6}-\ldots$
(b) $(-1,1)$
