Your Name

Student ID \#

Professor's Name

Your Signature
\square

TA's Name

- CHECK that your exam contains 8 problems on 8 pages.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	12	
3	13	
4	13	
5	13	

Problem	Total Points	Score
6	12	
7	12	
8	13	
Total	100	

1. (12 points) Use the three points $P(1,2,1), Q(3,2,2)$ and $R(-1,0,-1)$ to answer the following.
(a) Give the parametric equations for the line that passes through the points P and Q.
(b) Compute $\operatorname{proj}_{\overrightarrow{P Q}} \overrightarrow{P R}$.
(c) Compute the point on the line given in part (a) that is closest to the point $R(-1,0,-1)$.
2. (12 points) Consider the curve given by the vector function $\mathbf{r}(t)=\left\langle t^{2}-1,2 t, \frac{t^{3}}{3}\right\rangle$.
(a) Compute $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$.
(b) Compute a parametric equation for the tangent line to this curve when $t=1$.
(c) What is the curvature of $\mathbf{r}(t)$ at $t=1$?
3. (13 points) Consider the implicitly defined surface $2 x y z+x y+z^{2}+2=x z^{2}+x+y+2 z$ in \mathbb{R}^{3}.
(a) Find the two points of intersection of the surface with the line through the origin and in direction $\mathbf{j}+\mathbf{k}$.
(b) Write the equation of the tangent plane to the surface at the point $(0,5,3)$.
4. (13 points) Find the absolute maximum and minimum values of $f(x, y)=x+y+\sqrt{1-x^{2}-y^{2}}$ on the quarter disc $\left\{(x, y) \mid x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\}$.
5. (13 points)

Let \mathcal{S} be the solid beneath $z=12 x y^{2}$ and above $z=0$, over the rectangle $[0,1] \times[0,1]$. Find the value of $m>1$ so that the plane $y=m x$ divides \mathcal{S} into two pieces with equal volume.
6. (12 points) Compute $\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}}\left(x^{3}+x y^{2}\right) d y d x$.
7. (12 points) Let $f(x)=x^{2} \sin \left(x^{3}\right)+\frac{1}{8-x^{3}}$.
(a) Find $T_{6}(x)$, the sixth Taylor polynomial for $f(x)$ based at $b=0$.
(b) Give the largest open interval on which the Taylor series for $f(x)$ based at $b=0$ converges.
8. (13 points) Let $g(x)=\sqrt{3+x^{2}}$.
(a) Find $T_{1}(x)$, the first Taylor polynomial for $g(x)$ based at $b=1$.
(b) Use your answer to (a) to approximate the value of $\sqrt{3.25}$.
(c) Use Taylor's inequality to find an upper bound for the error in your approximation in part (b).

