Your Signature

Your Name

Math 126

Professor's Name

	Quiz	Section
TA's Name		

- CHECK that your exam contains 8 problems on 8 pages.
- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	12	
3	13	
4	13	
5	13	

Problem	Total Points	Score
6	12	
7	12	
8	13	
Total	100	

- 1. (12 points) Use the three points P(1,2,1), Q(3,2,2) and R(-1,0,-1) to answer the following.
 - (a) Give the parametric equations for the line that passes through the points P and Q.

(b) Compute $\operatorname{\mathbf{proj}}_{\overrightarrow{PR}}\overrightarrow{PR}$.

(c) Compute the point on the line given in part (a) that is closest to the point R(-1, 0, -1).

- 2. (12 points) Consider the curve given by the vector function $\mathbf{r}(t) = \left\langle t^2 1, 2t, \frac{t^3}{3} \right\rangle$.
 - (a) Compute $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.

(b) Compute a parametric equation for the tangent line to this curve when t = 1.

(c) What is the curvature of $\mathbf{r}(t)$ at t = 1?

- 3. (13 points) Consider the implicitly defined surface $2xyz + xy + z^2 + 2 = xz^2 + x + y + 2z$ in \mathbb{R}^3 .
 - (a) Find the two points of intersection of the surface with the line through the origin and in direction $\mathbf{j} + \mathbf{k}$.

(b) Write the equation of the tangent plane to the surface at the point (0, 5, 3).

4. (13 points) Find the absolute maximum and minimum values of $f(x, y) = x + y + \sqrt{1 - x^2 - y^2}$ on the quarter disc $\{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$. 5. (13 points)

Let S be the solid beneath $z = 12xy^2$ and above z = 0, over the rectangle $[0, 1] \times [0, 1]$. Find the value of m > 1 so that the plane y = mx divides S into two pieces with equal volume. 6. (12 points) Compute $\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} (x^3 + xy^2) \, dy \, dx.$

- 7. (12 points) Let $f(x) = x^2 \sin(x^3) + \frac{1}{8 x^3}$.
 - (a) Find $T_6(x)$, the sixth Taylor polynomial for f(x) based at b = 0.

(b) Give the largest open interval on which the Taylor series for f(x) based at b = 0 converges.

- 8. (13 points) Let $g(x) = \sqrt{3 + x^2}$.
 - (a) Find $T_1(x)$, the first Taylor polynomial for g(x) based at b = 1.

(b) Use your answer to (a) to approximate the value of $\sqrt{3.25}$.

(c) Use Taylor's inequality to find an upper bound for the error in your approximation in part (b).